Skip to main content
Log in

Supramolecular deep eutectic solvent: a powerful tool for pre-concentration of trace metals in edible oil

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The utilization of supramolecular deep eutectic solvent eddy-assisted liquid–liquid microextraction utilizing 2-hydroxypropyl β-cyclodextrin (SUPRADES) has been identified as a successful method for pre-enriching Cu, Zn, and Mn in vegetable oil samples. Determination of each element was conducted by inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion of metal-enriched phases. Various parameters were examined, including the composition of SUPRADES species [2HP-β-CD: DL-lactic acid], a cyclodextrin mass ratio of 20 wt%, a water bath temperature of 75 °C, an extractor volume of 800 μL, a dispersant volume of 50 μL, and an eddy current time of 5 min. Optimal conditions resulted in extraction rates of 99.6% for Cu, 105.2% for Zn, and 101.5% for Mn. The method exhibits a broad linear range spanning from 10 to 20,000 μg L−1, with determination coefficients exceeding 0.99 for all analytes. Enrichment coefficients of 24, 21, and 35 were observed. Limits of detection ranged from 0.89 to 1.30 μg L−1, while limits of quantification ranged from 3.23 to 4.29 μg L−1. The unique structural characteristics of the method enable the successful determination of trace elements in a variety of edible vegetable oils.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Misic IDR, Tosic SB, Pavlovic AN, Pecev-Marinkovic ET, Mrmosanin JM, Mitic SS, Stojanovic GS. Trace element content in commercial complementary food formulated for infants and toddlers: Health risk assessment. Food Chem. 2022;378:132113.

    Article  Google Scholar 

  2. Lin PID, Cardenas A, Rifas-Shiman SL, Zota AR, Hivert MF, Aris IM, Sanders AP. Non-essential and essential trace element mixtures and kidney function in early pregnancy – A cross-sectional analysis in project viva. Environ Res. 2023;216:114846.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng BJ, Wang J, Meng XL, Sun L, Hu B, Li HB, Sheng J, Chen GM, Tao FB, Sun YH, Yang LS. The association between essential trace element mixture and cognitive function in Chinese community-dwelling older adults. Ecotox Environ Safe. 2022;231:113182.

    Article  CAS  Google Scholar 

  4. Bocquet A, Barouki R, Briend A, Chouraqui JP, Darmaun D, Feillet F, Frelut ML, Guimber D, Lapillonne A, Peretti N, Rozé JC, Simeoni U, Turck D, Dupont C. Comité de nutrition de la Société française de pédiatrie (CN-SFP), potential toxicity of metal trace elements from food in children. Arch Pediatr. 2021;28:173–7.

    Article  CAS  PubMed  Google Scholar 

  5. Machate DJ. Anthropogenic hyperactivity for natural resources increases heavy metals concentrations in the environment: toxicity of healthy food and cancer risks estimated. J Trace Elem Miner. 2023;4:100057.

    Article  Google Scholar 

  6. Wei JX, Gao JQ, Cen K. Levels of eight heavy metals and health risk assessment considering food consumption by China’s residents based on the 5th China total diet study. Sci Total Environ. 2019;689:1141–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Sharma A, Upadhyaya KC, Vegetable oil: nutritional and industrial perspective. Curr Genomics. 2016;17: 230–240.

  8. Yan LJ, Lodge JK, Traber MG, Packer L. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Arch Biochem Biophys. 1997;339:165–71.

    Article  CAS  PubMed  Google Scholar 

  9. Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci F. 2006;5(4):169–86.

    Article  CAS  Google Scholar 

  10. Bakircioglu D, Kurtulus YB, Yurtsever S. Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES. Food Chem. 2013;138:770–5.

    Article  CAS  PubMed  Google Scholar 

  11. Shariff R, Aachary AA, Pacquette LH, Mittal AK, Girdhar R. Analytical method validation and determination of iron and phosphorus in vegetable oil by inductively coupled plasma-mass spectrometry with microwave assisted digestion. Anal Lett. 2018;51:1774–88.

    Article  CAS  Google Scholar 

  12. Ostermann M, Berglundb M, Taylor PDP. Measurement of the content of sulfur in gas oils using a high pressure asher, isotope dilution and thermal ionization mass spectrometry. J Anal Atom Spectrom. 2002;17:1368–72.

    Article  CAS  Google Scholar 

  13. Ni ZL, Tang FB, Liu YH, Shen DY, Mo RH. Multielemental analysis of camellia oil by microwave dry ashing and inductively coupled plasma mass spectrometry. Anal Lett. 2015;48:1777–86.

    Article  CAS  Google Scholar 

  14. Tokay F, Bağdat S. Determination of iron and copper in edible oils by flame atomic absorption spectrometry after liquid-liquid extraction. J Am Oil Chem Soc. 2015;92:317–22.

    Article  CAS  Google Scholar 

  15. Lepri FG, Chaves ES, Vieira MA, Ribeiro AS, Curtius AJ, DeOliveira LCC. Determination of Trace elements in vegetable oils and biodiesel by atomic spectrometric techniques—a review. Appl Spectrosc Rev. 2011;46:175–206.

    Article  Google Scholar 

  16. Adhami K, Asadollahzadeh H, Ghazizadeh M. Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL-based dispersive liquid–liquid microextraction technique, and flame atomic absorption spectrophotometry. J Food Compos Anal. 2020;89:103457.

    Article  CAS  Google Scholar 

  17. Wang C, Li S, Sun P, et al. Vortex-assisted hydrophobic natural deep eutectic solvent liquid-liquid microextraction for the removal of silver ions from environmental water. Anal Bioanal Chem. 2024;416(4):873–82.

    Article  CAS  PubMed  Google Scholar 

  18. Vezzulli F, Fontanella MC, Lambri M, Beone GM. Specialty and high-quality coffee: discrimination through elemental characterization via ICP-OES, ICP-MS, and ICP-MS/MS of origin, species, and variety. J Sci Food Agr. 2023;103:4303–16.

    Article  CAS  Google Scholar 

  19. Machado I, ergmann G, Pistón M. A simple and fast ultrasound-assisted extraction procedure for Fe and Zn determination in milk-based infant formulas using flame atomic absorption spectrometry (FAAS). Food Chem. 2016;194: 373–376.

  20. Ozbek N, Ozcan M. Simultaneous determination of Co, Al and Fe by HR CS-GFAAS. Talanta. 2016;148:17–21.

    Article  CAS  PubMed  Google Scholar 

  21. Francisco BBA, Brum DM, Cassella RJ. Determination of metals in soft drinks packed in different materials by ETAAS. Food Chem. 2015;185:488–94.

    Article  CAS  PubMed  Google Scholar 

  22. Hoogerstraete TV, Onghena B, Binnemans K. Homogeneous liquid-liquid extraction of metal ions with a functionalized ionic liquid. J Phys Chem Lett. 2013;4:1659–63.

    Article  CAS  PubMed  Google Scholar 

  23. Provazi K, Campos BA, Espinosa DCR, Tenório JAS. Metal separation from mixed types of batteries using selective precipitation and liquid–liquid extraction techniques. Waste Manage. 2011;31:59–64.

    Article  CAS  Google Scholar 

  24. Lima LC, Papai R, Gaubeur I. Butan-1-ol as an extractant solvent in dispersive liquid-liquid microextraction in the spectrophotometric determination of aluminium. J Trace Elem Med Bio. 2018;50:175–81.

    Article  CAS  Google Scholar 

  25. Martinis EM, Escudero LB, Salvarezza R, Calderón MF, Ibañez FJ, Wuilloud RG. Liquid–liquid microextraction based on a dispersion of Pd nanoparticles combined with ETAAS for sensitive Hg determination in water samples. Talanta. 2013;108:46–52.

    Article  CAS  PubMed  Google Scholar 

  26. Altunay N, Gürkan R, Kır U. Spectrophotometric determination of low levels arsenic species in beverages after ion-pairing vortex-assisted cloud-point extraction with acridine red. Food Addit Contam A. 2016;33:259–70.

    CAS  Google Scholar 

  27. Wang L, Liu Y, Lu HS, Huang ZY. Recycling of phosphorus-containing plastic based on the dual effects of switchable hydrophilicity solvents. Chemosphere. 2020;259:127402.

    Article  CAS  PubMed  Google Scholar 

  28. Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL. Magnetic ionic liquids in analytical chemistry: A review. Anal Chim Acta. 2016;934:9–21.

    Article  CAS  PubMed  Google Scholar 

  29. Boateng ID. A critical review of emerging hydrophobic deep eutectic solvents’ applications in food chemistry: trends and opportunities. J Agr Food Chem. 2022;70:11860–79.

    Article  CAS  Google Scholar 

  30. Mišan A, Nađpal J, Stupar A, Pojić M, Mandić A, Verpoorte R, Choi YH. The perspectives of natural deep eutectic solvents in agri-food sector. Crit Rev Food Sci. 2020;60:2564–92.

    Article  Google Scholar 

  31. Wang Y, Yang L, Xing RR, Wang RQ, Chen X, Hu S. A switchable deep eutectic solvent for the homogeneous liquid-liquid microextraction of flavonoids from “Scutellariae Radix.” J Chromatogr A. 2023;1688:463712.

    Article  CAS  PubMed  Google Scholar 

  32. Moufawad T, Moura L, Ferreira M, Bricout H, Tilloy S, Monflier E, Gomes MC, Landy D, Fourmentin S. First evidence of cyclodextrin inclusion complexes in a deep eutectic solvent. ACS Sustain Chem Eng. 2019;7:6345–51.

    Article  CAS  Google Scholar 

  33. Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharmaceut. 2018;535:272–84.

    Article  CAS  Google Scholar 

  34. Georgantzi C, Lioliou AE, Paterakis N, Makris NP. Combination of lactic acid-based Deep Eutectic Solvents (DES) with β-cyclodextrin: performance screening using ultrasound-assisted extraction of polyphenols from selected native greek medicinal plants. Agronomy. 2017;7:54.

    Article  Google Scholar 

  35. El Achkar T, Moufawad T, Ruellan S, Landy D, Greige-Gerges H, Fourmentin S. Cyclodextrins: from solute to solvent. Chem Commun. 2020;56:3385–8.

    Article  Google Scholar 

  36. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliver Rev. 2007;59:645–66.

    Article  CAS  Google Scholar 

  37. Guan SQ, Li ZL, Xu BE, Wu ZC, Wang N, Zhang J, Han J, Guan TT, Wang JL, Li KX. Cyclodextrin-based deep eutectic solvents for efficient extractive and oxidative desulfurization under room temperature. Chem Eng J. 2022;441:136022.

    Article  CAS  Google Scholar 

  38. Farooq MQ, Zeger VR, Anderson JL. Comparing the extraction performance of cyclodextrin-containing supramolecular deep eutectic solvents versus conventional deep eutectic solvents by headspace single drop microextraction. J Chromatogr A. 2021;1658:462588.

    Article  CAS  PubMed  Google Scholar 

  39. Athanasiadis V, Grigorakis S, Lalas S, Makris DP. Methyl β-cyclodextrin as a booster for the extraction for Olea europaea leaf polyphenols with a bio-based deep eutectic solvent. Biomass Convers Bior. 2018;8:345–55.

    Article  CAS  Google Scholar 

  40. Shaaban H, Mostafa A, Alqarni AM, Alsultan R, Al shehab Z, Aljarrash Z, Al-Zawad W, Al-Kahlah S, Amir M. Dispersive liquid-liquid microextraction utilizing menthol-based deep eutectic solvent for simultaneous determination of sulfonamides residues in powdered milk-based infant formulas. J Food Compos Anal. 2023;117: 105137.

  41. Mammana SB, Gagliardi LG, Silva MF. Sustainable sample preparation method based on hydrophobic natural deep eutectic solvents. Chemometric tools and green metrics for ibuprofen in groundwater. Sep Purif Technol. 2022;303: 122240.

  42. Shishov A, Gerasimov A, Bulatov A. Deep eutectic solvents based on carboxylic acids for metals separation from plant samples: Elemental analysis by ICP-OES. Food Chem. 2022;366:130634.

    Article  CAS  PubMed  Google Scholar 

  43. Liu ZS, Xu WW, Kovaleva EG, Cheng J, Li HB. Recent progress in encapsulation and controlled release of pesticides based on cyclodextrin derivative carriers. Advanced Agrochem. 2022;1:89–99.

    Article  Google Scholar 

  44. Jing X, Huang X, Zhang YM, Wang M, Xue HY, Wang XW, Jia LY. Cyclodextrin-based dispersive liquid–liquid microextraction for the determination of fungicides in water, juice, and vinegar samples via HPLC. Food Chem. 2022;367:130664.

    Article  CAS  PubMed  Google Scholar 

  45. Flaherty RJ, Nshime B, DeLaMarre M, DeJong S, Scott P, Lantz AW. Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere. 2013;91:912–20.

    Article  CAS  PubMed  Google Scholar 

  46. Tang PX, Sun QM, Zhao LD, Tang YL, Liu YQ, Pu HY, Gan N, Liu YY, Li H. A simple and green method to construct cyclodextrin polymer for the effective and simultaneous estrogen pollutant and metal removal. Chem Eng J. 2019;366:598–607.

    Article  CAS  Google Scholar 

  47. Langer C, Süss R. HPLC-DAD-CAD-based approach for the simultaneous analysis of hydrophobic drugs and lipid compounds in liposomes and for cyclodextrin/drug inclusion complexes. J Pharmaceut Biomed. 2021;201:114120.

    Article  CAS  Google Scholar 

  48. Emily H, Katayun B, Alan CW, Ah-Hyung AP. Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem. 2019;21:919–36.

    Article  Google Scholar 

  49. Türker N, Erdoğdu F. Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J Food Eng. 2006;76: 579–583.

  50. Wu K, Zhang X, Yuan QX, Liu RX. Investigation of physico-chemical properties of hydrochar and composition of bio-oil from the hydrothermal treatment of dairy manure: Effect of type and usage volume of extractant. Waste Manage. 2020;116:157–65.

    Article  CAS  Google Scholar 

  51. Hapiot F, Tilloy S, Monflier E. Cyclodextrins as supramolecular hosts for organometallic complexes. Chem Rev. 2006;106:767–81.

    Article  CAS  PubMed  Google Scholar 

  52. Tahmasebi E, Yamini Y. Polythiophene-coated Fe3O4 nanoparticles as a selective adsorbent for magnetic solid-phase extraction of silver(I), gold(III), copper(II) and palladium(II). Microchim Acta. 2014;181:543–51.

    Article  CAS  Google Scholar 

  53. Jing X, Huang X, Zhang Y, et al. Cyclodextrin-based dispersive liquid–liquid microextraction for the determination of fungicides in water, juice, and vinegar samples via HPLC. Food chem. 2022;367:130664.

    Article  CAS  PubMed  Google Scholar 

  54. Hajšlová J, Zrostlı́ková J. Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. J Chromatogr A. 2003;1000: 181–197.

  55. Olesik JW, Jiao S. Matrix effects using an ICP-MS with a single positive ion lens and grounded stop: analyte mass dependent? J Anal Atom Spectrom. 2017;32:951–66.

    Article  CAS  Google Scholar 

  56. Ding SQ, Han XH, Zhu LJ, Hu HY, Fan LW, Wang SR. Cleanup of oils and organic solvents from contaminated water by biomass-based aerogel with adjustable compression elasticity. Water Res. 2023;232:119684.

    Article  CAS  PubMed  Google Scholar 

  57. Triolo A, Lo Celso F, Russina O. Structural features of β-cyclodextrin solvation in the deep eutectic solvent, reline. J Phys Chem B. 2020;124(13):2652–60.

    Article  CAS  PubMed  Google Scholar 

  58. Souza RMD, Mathias BM, Silveira CLPD, Aucélio RQ. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water. Spectrochim Acta B. 2005;60:711–5.

    Article  Google Scholar 

  59. Bakircioglu D, Topraksever N, Kurtulus YB. Determination of zinc in edible oils by flow injection FAAS after extraction induced by emulsion breaking procedure. Food Chem. 2014;151:219–24.

    Article  CAS  PubMed  Google Scholar 

  60. Mohebbi M, Heydari R, Ramezani M. Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ultrasonic assisted liquid-liquid microextraction and flame atomic absorption spectrometry. J Anal Chem. 2018;73:30–5.

    Article  CAS  Google Scholar 

  61. Sorouraddin SM, Farajzadeh MA, Okhravi T. Application of deep eutectic solvent as a disperser in reversed-phase dispersive liquid-liquid microextraction for the extraction of Cd(II) and Zn(II) ions from oil samples. J Food Compos Anal. 2020;93:103590.

    Article  CAS  Google Scholar 

  62. Drosaki E, Anthemidis AN. A novel automatic flow-batch extraction induced by emulsion breaking platform for on-line copper determination in edible oil samples by atomic absorption spectrometry. Talanta. 2022;244:123423.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors also appreciate the facilities rendered by the National Coarse Cereals Engineering Research Center and Agricultural Products and Processed Products Supervision and Testing Center, Ministry of Agriculture, for the facilities rendered We thank Home for Researchers (www.home-for-researchers.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the School Cultivation Subject (No.PTJH201905).

Author information

Authors and Affiliations

Authors

Contributions

Chao Wang: Conceptualization, Methodology, Validation, Writing—Original Draft. Shuo Li: Data curation. Peng Sun: Supervision. Yvling Gao: Writing—Review and Editing. Zhao Yv: Software, Validation.

Corresponding author

Correspondence to Peng Sun.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Wang, C., Li, S. et al. Supramolecular deep eutectic solvent: a powerful tool for pre-concentration of trace metals in edible oil. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05304-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05304-x

Keywords

Navigation