Skip to main content
Log in

Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Capillary electrophoresis (CE) is a powerful and sensitive tool for speciation analysis when combined with inductively coupled plasma mass spectrometry (ICP-MS); however, the performance of this technique can be limited by the nature of pneumatic nebulizers. This study compares two commercially available pneumatic nebulizers to a newly introduced vibrating capillary nebulizer (VCN) for on-line coupling of CE with ICP-MS. The VCN is a low-cost, non-pneumatic nebulizer that is based on the design of capillary vibrating sharp-edge spray ionization. As a piezoelectrically driven nebulization source, the VCN creates an aerosol independent of gas flows and does not produce a low-pressure region at the nebulizer orifice. To compare the systems, we performed replicate analyses of sulfate in river water with each nebulizer and the same CE and ICP-MS instruments and determined the figures of merit of each setup. With the CE-VCN-ICP-MS setup, we achieved around 2–4 times lower sensitivity compared to the commercial setups. However, the VCN-based setup provided lower noise levels and better linear correlation from the analysis of calibration standards, which resulted in indistinguishable LOD and LOQ values from the in-house-built VCN-based and commercial setups for CE-ICP-MS analysis. The VCN is found to have the highest baseline stability with a standard deviation of 3500 cts s−1, corresponding to an RSD of 2.7%. High reproducibility is found with the VCN with a peak area RSD of 4.1% between 3 replicate measurements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun B, Macka M, Haddad PR. Speciation of arsenic and selenium by capillary electrophoresis. J Chromatogr A. 2004;1039(1):201–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kot A, Namiesńik J. The role of speciation in analytical chemistry. TrAC, Trends Anal Chem. 2000;19(2):69–79.

    Article  CAS  Google Scholar 

  3. Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, van Leeuwen HP, et al. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl Chem. 2000;72(8):1453–70.

    Article  CAS  Google Scholar 

  4. Szpunar J, Lobinski R, Prange A. Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc. 2003;57(3):102A-A112.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Álvarez-Llamas G, Fernández de laCampa MadR, Sanz-Medel A. ICP-MS for specific detection in capillary electrophoresis. TrAC, Trends Anal Chem. 2005;24(1):28-36.

  6. Vogt C, Klunder GL. Separation of metal ions by capillary electrophoresis – diversity, advantages, and drawbacks of detection methods. Fresenius J Anal Chem. 2001;370(4):316–31.

    Article  CAS  PubMed  Google Scholar 

  7. Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev. 2013;113(1):778–812.

    Article  CAS  PubMed  Google Scholar 

  8. Kannamkumarath SS, Wrobel K, Wrobel K, B’Hymer C, Caruso JA. Capillary electrophoresis–inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J Chromatogr A. 2002;975(2):245–66.

    Article  CAS  PubMed  Google Scholar 

  9. Van Holderbeke M, Zhao Y, Vanhaecke F, Moens L, Dams R, Sandra P. Speciation of six arsenic compounds using capillary electrophoresis-inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1999;14(2):229–34.

    Article  Google Scholar 

  10. Qu H, Mudalige TK, Linder SW. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion. J Agric Food Chem. 2015;63(12):3153–60.

    Article  CAS  PubMed  Google Scholar 

  11. Pitois A, Heras LAdL, Betti M. Determination of fission products in nuclear samples by capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS). Int J Mass spectrom. 2008;270(3):118–26.

    Article  CAS  Google Scholar 

  12. Dupuis E, Isnard H, Chartier F. Separation and isotope ratio measurements of actinides and lanthanides in spent nuclear fuel samples by CE-MC-ICP-MS. J Anal At Spectrom. 2022;37(11):2340–50.

    Article  CAS  Google Scholar 

  13. Michalke B, Willkommen D, Venkataramani V. Iron redox speciation analysis using capillary electrophoresis coupled to inductively coupled plasma mass spectrometry (CE-ICP-MS). Frontiers in Chemistry. 2019;7.

  14. Duroux C, Hagège A. CE-ICP-MS to probe Aβ1–42/copper (II) interactions, a complementary tool to study amyloid aggregation in Alzheimer’s disease. Metallomics. 2021;14(1).

  15. Timerbaev AR, Pawlak K, Aleksenko SS, Foteeva LS, Matczuk M, Jarosz M. Advances of CE-ICP-MS in speciation analysis related to metalloproteomics of anticancer drugs. Talanta. 2012;102:164–70.

    Article  CAS  PubMed  Google Scholar 

  16. Aleksenko SS, Matczuk M, Lu X, Foteeva LS, Pawlak K, Timerbaev AR, et al. Metallomics for drug development: an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(iii) drug bound to holo-transferrin in simulated cancer cytosol†. Metallomics. 2013;5(8):955–63.

    Article  CAS  PubMed  Google Scholar 

  17. Olesik JW, Kinzer JA, Olesik SV. Capillary electrophoresis inductively coupled plasma spectrometry for rapid elemental speciation. Anal Chem. 1995;67(1):1–12.

    Article  CAS  Google Scholar 

  18. Lu Q, Bird SM, Barnes RM. Interface for capillary electrophoresis and inductively coupled plasma mass spectrometry. Anal Chem. 1995;67(17):2949–56.

    Article  CAS  Google Scholar 

  19. Kinzer JA, Olesik JW, Olesik SV. Effect of laminar flow in capillary electrophoresis: model and experimental results on controlling analysis time and resolution with inductively coupled plasma mass spectrometry detection. Anal Chem. 1996;68(18):3250–7.

    Article  CAS  Google Scholar 

  20. Ranganathan N, Li C, Suder T, Karanji AK, Li X, He Z, et al. Capillary vibrating sharp-edge spray ionization (cVSSI) for voltage-free liquid chromatography-mass spectrometry. J Am Soc Mass Spectrom. 2019;30(5):824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kristoff CJ, Li C, Li P, Holland LA. Low flow voltage free interface for capillary electrophoresis and mass spectrometry driven by vibrating sharp-edge spray ionization. Anal Chem. 2020;92(4):3006–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elshamy YS, Strein TG, Holland LA, Li C, DeBastiani A, Valentine SJ, et al. Nanoflow sheath voltage-free interfacing of capillary electrophoresis and mass spectrometry for the detection of small molecules. Anal Chem. 2022;94(32):11329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor TL, Gundlach-Graham A. Integration of capillary vibrating sharp-edge spray ionization as a nebulization device for ICP-MS. J Anal At Spectrom. 2023;38(3):721–9.

    Article  CAS  Google Scholar 

  24. Yanes EG, Miller-Ihli NJ. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements. Spectrochim Acta, Part B. 2004;59(6):883–90.

    Article  ADS  Google Scholar 

  25. Schaumlöffel D, Prange A. A new interface for combining capillary electrophoresis with inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem. 1999;364(5):452–6.

    Article  Google Scholar 

  26. Prange A, Schaumlöffel D. Determination of element species at trace levels using capillary electrophoresis-inductively coupled plasma sector field mass spectrometry. J Anal At Spectrom. 1999;14(9):1329–32.

    Article  CAS  Google Scholar 

  27. Gislason SR, Torssander P. Response of sulfate concentration and isotope composition in Icelandic rivers to the decline in global atmospheric SO2 emissions into the North Atlantic Region. Environ Sci Technol. 2006;40(3):680–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE. Sulfur emissions to the atmosphere from natural sources. J Atmos Chem. 1992;14(1):315–37.

    Article  CAS  Google Scholar 

  29. Tang K. Chemical diversity and biochemical transformation of biogenic organic sulfur in the ocean. Frontiers in Marine Science. 2020;7.

  30. Sievert SM, Kiene RP, Schulz-Vogt HN. The sulfur cycle. Oceanography. 2007;20(2):117–23.

    Article  Google Scholar 

  31. Faßbender S, Rodiouchkina K, Vanhaecke F, Meermann B. Method development for on-line species-specific sulfur isotopic analysis by means of capillary electrophoresis/multicollector ICP-mass spectrometry. Anal Bioanal Chem. 2020;412(23):5637–46.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Novotný T, Gaš B. Electrolysis phenomena in electrophoresis. Electrophoresis. 2020;41(7–8):536–44.

    Article  PubMed  Google Scholar 

  33. Felinger A. Data analysis and signal processing in chromatography. Amsterdam: Elsevier; 1998.

    Google Scholar 

  34. Goldhammer T, Rossoll T. Sulphate in River Spree and Lake Müggelsee: Leibnize Institute of Freshwater Ecology and Inland Fisheries; [Available from: https://www.igb-berlin.de/en/project/sulphate-river-spree-and-lake-muggelsee. Accessed Nov 2023.

  35. Faßbender S, Döring A-K, Meermann B. Development of complementary CE-MS methods for speciation analysis of pyrithione-based antifouling agents. Anal Bioanal Chem. 2019;411(27):7261–72.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors thank the Analytical Chemistry Division of the German Chemical Society (GDCh) for the ABC publication grant awarded to T.T. in support of her research stay at BAM. The authors would also like to acknowledge funding sources for this work, including an Iowa State University Faculty startup grant. D.T. thanks the German Research Foundation (DFG) for funding (ME 3685/5–1, project number: 440953647). T.P.T.D. gratefully acknowledges Erasmus Mundus Joint Master’s Degree Program EACH—Excellence in Analytical Chemistry, supported by the Erasmus + Program of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Björn Meermann or Alexander Gundlach-Graham.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, T.L., Tukhmetova, D., Duong, T.P.T. et al. Comparative study of the vibrating capillary nebulizer (VCN) and commercially available interfaces for on-line coupling of capillary electrophoresis with ICP-MS. Anal Bioanal Chem 416, 1613–1621 (2024). https://doi.org/10.1007/s00216-024-05162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05162-7

Keywords

Navigation