Skip to main content
Log in

Evaluation of deep eutectic solvents chiral selectors based on lactobionic acid in capillary electrophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recently, deep eutectic solvents (DESs) have attracted considerable interest in analytical chemistry. This work described the enantioseparations of twenty amino alcohol drugs with several DESs based on lactobionic acid (LA) as the sole chiral selector in capillary electrophoresis (CE) firstly. Compared to the single LA system and the ionic liquid/LA synergistic system, the DES system exhibited considerably improved separations. The influences of some key parameters on separations were investigated in detail. This work also experimentally demonstrated that the carboxyl group was indispensable in the process of chiral recognition. The mechanisms of the improvements of DESs on enantioseparations were studied via ultraviolet spectroscopy. Furthermore, the proposed method was used to determine the enantiomeric purity of propranolol hydrochloride successfully. This is the first time that chiral DESs were utilized as the sole chiral selectors in CE, and this strategy has opened up a new prospect for the use of DESs in enantioseparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CE:

Capillary electrophoresis

DESs:

Deep eutectic solvents

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

ILs:

Ionic liquids

LA:

Lactobionic acid

TEACl:

Tetraethylammonium chloride

TBACl:

Tetrabutylammonium chloride

TBPCl:

Tetrabutylphosphonium chloride

PRO:

Propranolol

MET:

Metoprolol

SOT:

Sotalol

BIS:

Bisoprolol

ESM:

Esmolol

ATE:

Atenolol

CLE:

Clenbuterol

TUL:

Tulobuterol

PCT:

Procaterol

CAR:

Carvedilol

RIT:

Ritodrine

BAM:

Bambuterol

CLO:

Clopronaline

TER:

Terbutaline

SAL:

Salbutamol

BEV:

Bevantolol

SYN:

Synephrine

PPF:

Propafenone

ACE:

Acebutolol

OCT:

Octopamine

EPI:

Epinephrine

ISO:

Isoproterenol

Rs:

Resolution

References

  1. An N, Wang L, Zhao J, Lv L, Wang N, Guo H. Enantioseparation of fourteen amino alcohols by nonaqueous capillary electrophoresis using the lactobionic acid/D-(+)-xylose-boric acid complexes as chiral selectors. Anal Methods. 2016;8:1127–34.

    Article  CAS  Google Scholar 

  2. Liu B, Lian H, Chen L, Wei X, Sun X. Differential potential ratiometric sensing platform for enantiorecognition of chiral drugs. Anal Biochem. 2019;574:39–45.

    Article  PubMed  CAS  Google Scholar 

  3. Li L, Li L, Jin Y, Shuang Y, Wang H. Preparation of a teicoplanin-bonded chiral stationary phase for simultaneous determination of clenbuterol and salbutamol enantiomers in meat by LC-MS/MS. Microchem J. 2020;157:104925.

    Article  CAS  Google Scholar 

  4. Zhang Y, Li K, Xiong L, Wang B, Xie S, Zhang J, Yuan L. “Click” preparation of a chiral macrocycle-based stationary phase for both normal-phase and reversed-phase high performance liquid chromatography enantioseparation. J Chromatogr A. 2022;1683:463551.

    Article  PubMed  CAS  Google Scholar 

  5. Qiu H, Xiang H, Wen M, Chen S, Zhu J, Tong S. Enantioseparation of two antifungal azole drugs by analytical countercurrent chromatography using sulfobutyl ether-beta-cyclodextrin as chiral selector. J Chromatogr A. 2023;1705:464185.

    Article  PubMed  CAS  Google Scholar 

  6. Salido-Fortuna S, Castro-Puyana M, Fernandez-Bachiller MI, Marina ML. Synthesis and characterization of carnitine-based ionic liquids and their evaluation as additives in cyclodextrin-electrokinetic chromatography for the chiral separation of thiol amino acids. J Chromatogr A. 2022;1670:462955.

    Article  PubMed  CAS  Google Scholar 

  7. Ranasinghe M, Quirino JP. Can we replace liquid chromatography with the greener capillary electrophoresis? Curr Opin Green Sust. 2021;31:100515.

    Article  CAS  Google Scholar 

  8. Zhang C, Ma X. Use of chiral ionic liquid as additive for synergistic enantioseparation of basic drugs in capillary electrophoresis. J Pharmaceut Biomed. 2023;225:115204.

    Article  CAS  Google Scholar 

  9. Zhu X, Chen C, Chen J, Xu G, Du Y, Ma X, Sun X, Feng Z, Huang Z. Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: a novel ionic liquid in capillary electrophoresis enantioseparation. J Pharmaceut Biomed. 2020;180:113030.

    Article  CAS  Google Scholar 

  10. Dong X, Dong J, Ou J, Zhu Y, Zou H. Preparation and evaluation of a vancomycin-immobilized silica monolith as chiral stationary phase for CEC. Electrophoresis. 2007;28:2606–12.

    Article  PubMed  CAS  Google Scholar 

  11. Chen B, Du Y, Li P. Investigation of enantiomeric separation of basic drugs by capillary electrophoresis using clindamycin phosphate as a novel chiral selector. Electrophoresis. 2009;30:2747–54.

    Article  PubMed  CAS  Google Scholar 

  12. Ma X, Du Y, Zhu X, Feng Z, Chen C, Yang J. Evaluation of an ionic liquid chiral selector based on clindamycin phosphate in capillary electrophoresis. Anal Bioanal Chem. 2019;411:5855–66.

    Article  PubMed  CAS  Google Scholar 

  13. Ma X, Kan Z, Du Y, Yang J, Feng Z, Zhu X, Chen C. Enantioseparation of amino alcohol drugs by nonaqueous capillary electrophoresis with a maltobionic acid-based ionic liquid as the chiral selector. Analyst. 2019;144:7468–77.

    Article  PubMed  ADS  CAS  Google Scholar 

  14. Zhang Q, Ren S, Li A, Zhang J, Xue S, Sun X. Tartaric acid-based ionic liquid-type chiral selectors: effect of cation species on their enantioseparation performance in capillary electrophoresis. Sep Purif Technol. 2021;275:119228.

    Article  CAS  Google Scholar 

  15. Wang L, Hu S, Guo Q, Yang G, Chen X. Di-n-amyl l-tartrate–boric acid complex chiral selector in situ synthesis and its application in chiral nonaqueous capillary electrophoresis. J Chromatogr A. 2011;1218:1300–9.

    Article  PubMed  CAS  Google Scholar 

  16. Hu S, Zhang M, Li F, Breadmore MC. beta-Cyclodextrin-copper (II) complex as chiral selector in capillary electrophoresis for the enantioseparation of beta-blockers. J Chromatogr A. 2019;1596:233–40.

    Article  PubMed  CAS  Google Scholar 

  17. Gong X, Hauser PC. Enantiomeric separation of underivatized small amines in conventional and on-chip capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2006;27:4375–82.

    Article  PubMed  CAS  Google Scholar 

  18. Schmid MG, Laffranchini M, Dreveny D, Gubitz G. Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis. Electrophoresis. 1999;20:2458–61.

    Article  PubMed  CAS  Google Scholar 

  19. Sun X, Liu K, Du Y, Liu J, Ma X. Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis. Electrophoresis. 2019;40:1921–30.

    Article  PubMed  CAS  Google Scholar 

  20. Xu H, Feng Z, Du Y. Synthesis, application and molecular modeling study of ionic liquid functionalized lactobionic acid, 3-methyl-1-(3-sulfopropyl)-1H-imidazol-3-ium lactobionate, as a chiral selector in capillary electrophoresis. Analyst. 2020;145:1025–32.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Zhang Q, Du Y, Du S, Zhang J, Feng Z, Zhang Y, Li X. Tetramethylammonium-lactobionate: a novel ionic liquid chiral selector based on saccharides in capillary electrophoresis. Electrophoresis. 2015;36:1216–23.

    Article  PubMed  CAS  Google Scholar 

  22. Ding W, Ma M, Du Y, Chen C, Ma X. Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Microchim Acta. 2020;187:651.

    Article  CAS  Google Scholar 

  23. Li L, Liu Y, Wang Z, Yang L, Liu H. Development and applications of deep eutectic solvents derived functional materials in chromatographic separation. J Sep Sci. 2021;44:1098–121.

    Article  PubMed  CAS  Google Scholar 

  24. VandenElzen L, Hopkins TA. Monosaccharide-based deep eutectic solvents for developing circularly polarized luminescent materials. Acs Sustain Chem Eng. 2019;7:16690–7.

    Article  CAS  Google Scholar 

  25. Wang R, Sun D, Wang C, Liu L, Li F, Tan Z. Biphasic recognition chiral extraction of threonine enantiomers in a two-phase system formed by hydrophobic and hydrophilic deep-eutectic solvents. Sep Purif Technol. 2019;215:102–7.

    Article  CAS  Google Scholar 

  26. Mu Y, Wu X, Huang Y, Liu Z. Investigation of deep eutectic solvents as additives to β-CD for enantiomeric separations of zopiclone, salbutamol, and amlodipine by CE. Electrophoresis. 2019;40:1992–5.

    Article  PubMed  CAS  Google Scholar 

  27. Deng S, Pan J, Wang M, Huang Y, Xia Z. Study on improvement of chiral separation of capillary electrophoresis based on cyclodextrin by deep eutectic solvents. Talanta. 2020;220:121419.

    Article  PubMed  CAS  Google Scholar 

  28. Salido-Fortuna S, Casado N, Castro-Puyana M, Marina ML. Use of choline chloride-D-sorbitol deep eutectic solvent as additive in cyclodextrin-electrokinetic chromatography for the enantiomeric separation of lacosamide. Microchem J. 2021;160:105669.

    Article  CAS  Google Scholar 

  29. García-Cansino L, Marina ML, García MA. Effect of ionic liquids and deep eutectic solvents on the enantiomeric separation of clopidogrel by cyclodextrin-electrokinetic chromatography. Quantitative analysis in pharmaceutical formulations using tetrabutylammonium L-aspartic acid combined with carboxymethyl-γ-cyclodextrin. Microchem J. 2021;171:106815.

    Article  Google Scholar 

  30. Li A, Xue S, Xu Y, Ding S, Wen D, Zhang Q. A feasibility study on the use of hydrophobic eutectic solvents as pseudo-stationary phases in capillary electrophoresis for chiral separations. Anal Chim Acta. 2023;1239:340693.

    Article  PubMed  CAS  Google Scholar 

  31. García MÁ, Jiménez-Jiménez S, Marina ML. Stereoselective separation of dimethenamid by cyclodextrin electrokinetic chromatography using deep eutectic solvents. J Chromatogr A. 2022;1673:463114.

    Article  Google Scholar 

  32. Li A, Ren S, Teng C, Liu H, Zhang Q. The role of deep eutectic solvents in chiral capillary electrokinetic chromatography: a comparative study based on α-cyclodextrin chiral selector. J Mol Liq. 2022;359:119281.

    Article  CAS  Google Scholar 

  33. Ioannou KA, Ioannou GD, Christou A, Stavrou IJ, Schmid MG, Kapnissi-Christodoulou CP. The potential of the use of deep eutectic solvents and amino acid-based ionic liquids to enhance the chiral discrimination ability of different chiral selectors in capillary electrophoresis. J Chromatogr A. 2023;1705:464152.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was financially supported by grants from Jiangsu Provincial Research Hospital (No. YJXYY202204-YSB66), the National Natural Science Foundation of China (Nos. 81900528; 82272624), Nantong Basic Research Project (No. JC12022046), Specialized Research Fund of Changzhou Siyao Pharm (No. ntyx2203), and Jiangsu Research Hospital Association for Precision Medication (No. JY202126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Cai or Mingbing Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5373 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, Q., Cai, L. et al. Evaluation of deep eutectic solvents chiral selectors based on lactobionic acid in capillary electrophoresis. Anal Bioanal Chem 416, 1417–1425 (2024). https://doi.org/10.1007/s00216-024-05138-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-024-05138-7

Keywords

Navigation