Skip to main content
Log in

Molecularly imprinted dispersive micro solid-phase extraction and tandem derivatization for the determination of histamine in fermented wines

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Histamine causes allergic reactions and can serve as an indicator for assessing food quality. This study designed and developed a dispersive micro solid-phase extraction (D-μSPE) method that combined the advantages of dispersive liquid–liquid extraction and solid-phase extraction (SPE). Molecularly imprinted polymers (MIPs) were employed as the solid phase in the D-μSPE method to extract histamine in wine samples. We used microwave energy to significantly reduce the synthesis time, achieving an 11.1-fold shorter synthesis time compared to the conventional MIP synthetic method. Under optimized D-μSPE conditions, our results showed that the dispersive solvent could effectively increase the adsorption performance of MIPs in wine samples by 97.7%. To improve the sensitivity of histamine detection in gas chromatography–mass spectrometry, we employed the microwave-assisted tandem derivatization method to reuse excess derivatization reagents and reduce energy consumption and reaction time. Calibration curves were constructed for wine samples spiked with 0–400 nmol histamine using the standard addition method, resulting in good linearity with a coefficient of determination of 0.999. The intra- and inter-batch relative standard deviations of the slope and intercept were < 0.7% and < 5.3%, respectively. The limits of quantitation and detection were 0.4 nmol and 0.1 nmol, respectively. The developed method was successfully applied to analyze the histamine concentration in 10 commercial wine samples. In addition, the AGREEprep tool was used to evaluate the greenness performance of the developed method, which obtained a higher score than the other reported methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends Anal Chem. 2018;98:128–42. https://doi.org/10.1016/j.trac.2017.11.001.

    Article  CAS  Google Scholar 

  2. de la Torre CAL, Conte-Junior CA. Detection of biogenic amines: quality and toxicity indicators in food of animal origin. In: Holban AM, Grumezescu AM (eds) Food control and biosecurity. Academic Press; 2018. pp. 225–257. https://doi.org/10.1016/B978-0-12-811445-2.00006-4.

  3. Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem. 2020;314: 126222. https://doi.org/10.1016/j.foodchem.2020.126222.

    Article  PubMed  CAS  Google Scholar 

  4. Gao X, Li C, He R, Zhang Y, Wang B, Zhang Z-H, Ho C-T. Research advances on biogenic amines in traditional fermented foods: emphasis on formation mechanism, detection and control methods. Food Chem. 2023;405: 134911. https://doi.org/10.1016/j.foodchem.2022.134911.

    Article  CAS  Google Scholar 

  5. Vasconcelos H, de Almeida JMMM, Matias A, Saraiva C, Jorge PAS, Coelho LCC. Detection of biogenic amines in several foods with different sample treatments: an overview. Trends Food Sci Technol. 2021;113:86–96. https://doi.org/10.1016/j.tifs.2021.04.043.

    Article  CAS  Google Scholar 

  6. Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, Bashammakh AS, O’Sullivan CK, El-Shahawi MS. Biogenic amines formation mechanism and determination strategies: future challenges and limitations. Crit Rev Anal Chem. 2020;50(6):485–500. https://doi.org/10.1080/10408347.2019.1657793.

    Article  PubMed  CAS  Google Scholar 

  7. Kokosa JM. A guide to recent trends in green applications of liquid phase microextraction for bioanalytical sample preparations. Sustain Chem Pharm. 2021;22: 100478. https://doi.org/10.1016/j.scp.2021.100478.

    Article  CAS  Google Scholar 

  8. Płotka-Wasylka J, Jatkowska N, Paszkiewicz M, Caban M, Fares MY, Dogan A, Garrigues S, Manousi N, Kalogiouri N, Nowak PM, Samanidou VF, de la Guardia M. Miniaturized solid phase extraction techniques for different kind of pollutants analysis: state of the art and future perspectives – PART 1. TrAC Trends Anal Chem. 2023;162: 117034. https://doi.org/10.1016/j.trac.2023.117034.

    Article  CAS  Google Scholar 

  9. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V. Solid-phase extraction of organic compounds: a critical review. Part ii TrAC Trends Anal Chem. 2016;80:655–67. https://doi.org/10.1016/j.trac.2015.08.014.

    Article  CAS  Google Scholar 

  10. Sajid M. Dispersive liquid-liquid microextraction: evolution in design, application areas, and green aspects. TrAC Trends Anal Chem. 2022;152: 116636. https://doi.org/10.1016/j.trac.2022.116636.

    Article  CAS  Google Scholar 

  11. Malik MI, Shaikh H, Mustafa G, Bhanger MI. Recent applications of molecularly imprinted polymers in analytical chemistry. Sep Purif Rev. 2019;48(3):179–219. https://doi.org/10.1080/15422119.2018.1457541.

    Article  CAS  Google Scholar 

  12. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal Chem. 2020;128: 115923. https://doi.org/10.1016/j.trac.2020.115923.

    Article  CAS  Google Scholar 

  13. BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2019;119(1):94–119. https://doi.org/10.1021/acs.chemrev.8b00171.

    Article  PubMed  CAS  Google Scholar 

  14. Lidström P, Tierney J, Wathey B, Westman J. Microwave assisted organic synthesis—a review. Tetrahedron. 2001;57(45):9225–83. https://doi.org/10.1016/S0040-4020(01)00906-1.

    Article  Google Scholar 

  15. Anwar J, Shafique U, Waheed uz Z, Rehman R, Salman M, Dar A, Anzano JM, Ashraf U, Ashraf S. Microwave chemistry: effect of ions on dielectric heating in microwave ovens. Arab J Chem. 2015;8(1):100–104. https://doi.org/10.1016/j.arabjc.2011.01.014.

  16. Zhang X, Hayward DO. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorganica Chim Acta. 2006;359(11):3421–33. https://doi.org/10.1016/j.ica.2006.01.037.

    Article  CAS  Google Scholar 

  17. Bogdal D. Microwave-assisted polymerization. Polym Sci Compr Ref. 2012;981–1027. https://doi.org/10.1016/B978-0-444-53349-4.00121-7.

  18. Tırıs G, Sare Yanıkoğlu R, Ceylan B, Egeli D, Kepekci Tekkeli E, Önal A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023;398: 133919. https://doi.org/10.1016/j.foodchem.2022.133919.

    Article  PubMed  CAS  Google Scholar 

  19. Jain A, Verma KK. Strategies in liquid chromatographic methods for the analysis of biogenic amines without and with derivatization. TrAC Trends Anal Chem. 2018;109:62–82. https://doi.org/10.1016/j.trac.2018.10.001.

    Article  CAS  Google Scholar 

  20. López-Lorente ÁI, Pena-Pereira F, Pedersen-Bjergaard S, Zuin VG, Ozkan SA, Psillakis E. The ten principles of green sample preparation. TrAC Trends Anal Chem. 2022;148: 116530. https://doi.org/10.1016/j.trac.2022.116530.

    Article  CAS  Google Scholar 

  21. Cerutti S, Pacheco PH, Gil R, Martinez LD. Green sample preparation strategies for organic/inorganic compounds in environmental samples. Curr Opin Green Sustain Chem. 2019;19:76–86. https://doi.org/10.1016/j.cogsc.2019.08.007.

    Article  Google Scholar 

  22. Sajid M, Płotka-Wasylka J. “Green” nature of the process of derivatization in analytical sample preparation. TrAC Trends Anal Chem. 2018;102:16–31. https://doi.org/10.1016/j.trac.2018.01.005.

    Article  CAS  Google Scholar 

  23. Tsai C-J, Liao F-Y, Weng J-R, Feng C-H. Tandem derivatization combined with salting-out assisted liquid–liquid microextraction for determination of biothiols in urine by gas chromatography–mass spectrometry. J Chromatogr A. 2017;1524:29–36. https://doi.org/10.1016/j.chroma.2017.09.069.

    Article  PubMed  CAS  Google Scholar 

  24. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J. Green chromatography. J Chromatogr A. 2013;1307:1–20. https://doi.org/10.1016/j.chroma.2013.07.099.

    Article  PubMed  CAS  Google Scholar 

  25. Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z, Zhou L. Greening analytical chromatography. TrAC Trends Anal Chem. 2010;29(7):667–80. https://doi.org/10.1016/j.trac.2010.03.008.

    Article  CAS  Google Scholar 

  26. Sadkowska J, Caban M, Chmielewski M, Stepnowski P, Kumirska J. Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix. Arch Environ Prot. 2017;43(3):3–9. https://doi.org/10.1515/aep-2017-0028.

    Article  Google Scholar 

  27. Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed. 2004;43(46):6250–84. https://doi.org/10.1002/anie.200400655.

    Article  CAS  Google Scholar 

  28. Santana APR, Mora-Vargas JA, Guimarães TGS, Amaral CDB, Oliveira A, Gonzalez MH. Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J Mol Liq. 2019;293: 111452. https://doi.org/10.1016/j.molliq.2019.111452.

    Article  CAS  Google Scholar 

  29. Pakade V, Lindahl S, Chimuka L, Turner C. Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions. J Chromatogr A. 2012;1230:15–23. https://doi.org/10.1016/j.chroma.2012.01.051.

    Article  PubMed  CAS  Google Scholar 

  30. Sun H-w, Qiao F-x. Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography. J Chromatogr A. 2008;1212(1):1–9. https://doi.org/10.1016/j.chroma.2008.09.107.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang H. Water-compatible molecularly imprinted polymers: promising synthetic substitutes for biological receptors. Polym. 2014;55(3):699–714. https://doi.org/10.1016/j.polymer.2013.12.064.

    Article  CAS  Google Scholar 

  32. Cui Y, He Z, Xu Y, Su Y, Ding L, Li Y. Fabrication of molecularly imprinted polymers with tunable adsorption capability based on solvent-responsive cross-linker. Chem Eng J. 2021;405: 126608. https://doi.org/10.1016/j.cej.2020.126608.

    Article  CAS  Google Scholar 

  33. Joshi VP, Karmalkar RN, Kulkarni MG, Mashelkar RA. Effect of solvents on selectivity in separation using molecularly imprinted adsorbents: separation of phenol and bisphenol A. Ind Eng Chem Res. 1999;38(11):4417–4423. https://pubs.acs.org/doi/10.1021/ie990331o.

  34. Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A. 2021;1637: 461822. https://doi.org/10.1016/j.chroma.2020.461822.

    Article  PubMed  CAS  Google Scholar 

  35. Sahebnasagh A, Karimi G, Mohajeri SA. Preparation and evaluation of histamine imprinted polymer as a selective sorbent in molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography analysis in canned fish. Food Anal Methods. 2014;7(1):1–8. https://link.springer.com/article/10.1007/s12161-013-9579-7.

  36. Gao J, Yan L, Yan Y, Chen L, Lu J, Xing W, Yu C, Chen M, Meng M, Yan Y, Wu Y. Solvent-driven controllable molecularly imprinted membrane with switched selectivity and fast regenerability enabled by customized bifunctional monomers. Chem Eng J. 2022;446: 136991. https://doi.org/10.1016/j.cej.2022.136991.

    Article  CAS  Google Scholar 

  37. Fiamegos YC, Stalikas CD. Gas chromatographic determination of amino acids via one-step phase-transfer catalytic pentafluorobenzylation–preconcentration. J Chromatogr A. 2006;1110(1):66–72. https://doi.org/10.1016/j.chroma.2006.01.074.

    Article  PubMed  CAS  Google Scholar 

  38. Scheyer A, Morville S, Mirabel P, Millet M. A multiresidue method using ion-trap gas chromatography–tandem mass spectrometry with or without derivatisation with pentafluorobenzylbromide for the analysis of pesticides in the atmosphere. Anal Bioanal Chem. 2005;381(6):1226–1233. https://link.springer.com/article/10.1007/s00216-005-3060-4.

  39. Abdelraheem EMH, Hassan SM, Arief MMH, Mohammad SG. Validation of quantitative method for azoxystrobin residues in green beans and peas. Food Chem. 2015;182:246–50. https://doi.org/10.1016/j.foodchem.2015.02.106.

    Article  PubMed  CAS  Google Scholar 

  40. Hasegawa K, Minakata K, Suzuki M, Suzuki O. The standard addition method and its validation in forensic toxicology. Forensic Toxicol. 2021;39 (2):311–333. https://link.springer.com/article/10.1007/s11419-021-00585-8.

  41. Cerrato A, Aita SE, Cannazza G, Capriotti AL, Cavaliere C, Citti C, Bosco CD, Gentili A, Montone CM, Paris R, Laganà A. Evaluation of the carotenoid and fat-soluble vitamin profile of industrial hemp inflorescence by liquid chromatography coupled to mass spectrometry and photodiode-array detection. J Chromatogr A. 2023;1692: 463838. https://doi.org/10.1016/j.chroma.2023.463838.

    Article  PubMed  CAS  Google Scholar 

  42. Moniente M, Botello-Morte L, García-Gonzalo D, Virto R, Pagán R, Ferreira V, Ontañón I. Combination of SPE and fluorescent detection of AQC-derivatives for the determination at sub-mg/L levels of biogenic amines in dairy products. Food Res Int. 2023;165: 112448. https://doi.org/10.1016/j.foodres.2022.112448.

    Article  PubMed  CAS  Google Scholar 

  43. Spizzirri UG, Puoci F, Iemma F, Restuccia D. Biogenic amines profile and concentration in commercial milks for infants and young children. Food Addit Contam A. 2019;36(3):337–49. https://doi.org/10.1080/19440049.2018.1563306.

    Article  CAS  Google Scholar 

  44. Jia S, Kang YP, Park JH, Lee J, Kwon SW. Determination of biogenic amines in Bokbunja (Rubus coreanus Miq.) wines using a novel ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Food Chem. 2012;132(3):1185–90. https://doi.org/10.1016/j.foodchem.2011.11.069.

    Article  PubMed  CAS  Google Scholar 

  45. Płotka-Wasylka J, Simeonov V, Namieśnik J. An in situ derivatization – dispersive liquid–liquid microextraction combined with gas-chromatography – mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks. J Chromatogr A. 2016;1453:10–8. https://doi.org/10.1016/j.chroma.2016.05.052.

    Article  PubMed  CAS  Google Scholar 

  46. Milheiro J, Ferreira LC, Filipe-Ribeiro L, Cosme F, Nunes FM. A simple dispersive solid phase extraction clean-up/concentration method for selective and sensitive quantification of biogenic amines in wines using benzoyl chloride derivatisation. Food Chem. 2019;274:110–7. https://doi.org/10.1016/j.foodchem.2018.08.116.

    Article  PubMed  CAS  Google Scholar 

  47. Basozabal I, Gomez-Caballero A, Diaz-Diaz G, Guerreiro A, Gilby S, Goicolea MA, Barrio RJ. Rational design and chromatographic evaluation of histamine imprinted polymers optimised for solid-phase extraction of wine samples. J Chromatogr A. 2013;1308:45–51. https://doi.org/10.1016/j.chroma.2013.08.002.

    Article  PubMed  CAS  Google Scholar 

  48. Wojnowski W, Tobiszewski M, Pena-Pereira F, Psillakis E. AGREEprep – Analytical greenness metric for sample preparation. TrAC Trends Anal Chem. 2022;149: 116553. https://doi.org/10.1016/j.trac.2022.116553.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Science and Technology Council (Grant No. MOST 111-2113-M-037-018 and 112-2113-M-037-018). We would also like to thank the NSYSU-KMU Joint Research Project (Grant No. NSYSU-KMU-112-P07) for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Chi Lin or Chia-Hsien Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2638 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, FY., Weng, JR., Lin, YC. et al. Molecularly imprinted dispersive micro solid-phase extraction and tandem derivatization for the determination of histamine in fermented wines. Anal Bioanal Chem 416, 945–957 (2024). https://doi.org/10.1007/s00216-023-05083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-05083-x

Keywords

Navigation