Skip to main content
Log in

High-throughput microfluidic chip with silica gel‐C18 channels for cyclotide separation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the past two decades, microfluidic-based separations have been used for the purification, isolation, and separation of biomolecules to overcome difficulties encountered by conventional chromatography-based methods including high cost, long processing times, sample volumes, and low separation efficiency. Cyclotides, or cyclic peptides used by some plant families as defense agents, have attracted the interest of scientists because of their biological activities varying from antimicrobial to anticancer properties. The separation process has a critical impact in terms of obtaining pure cyclotides for drug development strategies. Here, for the first time, a mimic of the high-performance liquid chromatography (HPLC) on microfluidic chip strategy was used to separate the cyclotides. In this regard, silica gel-C18 was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) and then filled inside the microchannel to prepare an HPLC C18 column-like structure inside the microchannel. Cyclotide extract was obtained from Viola ignobilis by a low voltage electric field extraction method and characterized by HPLC and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The extract that contained vigno 1, 2, 3, 4, 5, and varv A cyclotides was added to the microchannel where distilled water was used as a mobile phase with 1 µL/min flow rate and then samples were collected in 2-min intervals until 10 min. Results show that cyclotides can be successfully separated from each other and collected from the microchannel at different periods of time. These findings demonstrate that the use of microfluidic channels has a high impact on the separation of cyclotides as a rapid, cost-effective, and simple method and the device can find widespread applications in drug discovery research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Göransson U. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front Plant Sci. 2015;6:855. https://doi.org/10.3389/fpls.2015.00855.

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Veer SJ, Kan M-W, Craik DJ. Cyclotides: from structure to function. Chem Rev. 2019;119(24):12375–421. https://doi.org/10.1021/acs.chemrev.9b00402.

    Article  CAS  PubMed  Google Scholar 

  3. Daly NL, Rosengren KJ, Craik DJ. Discovery, structure and biological activities of cyclotides. Adv Drug Deliv Rev. 2009;61(11):918–30. https://doi.org/10.1016/j.addr.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  4. Dayani L, Dinani MS, Aliomrani M, Hashempour H, Varshosaz J, Taheri A (2022) Immunomodulatory effects of cyclotides isolated from Viola odorata in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Mult Scler Relat Disord: 103958. https://doi.org/10.1016/j.msard.2022.103958.

  5. Henriques ST, Craik DJ. Cyclotides as templates in drug design. Drug Discov Today. 2010;15(1–2):57–64. https://doi.org/10.1016/j.drudis.2009.10.007.

    Article  CAS  PubMed  Google Scholar 

  6. Craik DJ, Daly NL, Mulvenna J, Plan MR, Trabi M. Discovery, structure and biological activities of the cyclotides. Curr Prot Pept Sci. 2004;5(5):297–315. https://doi.org/10.2174/1389203043379512.

    Article  CAS  Google Scholar 

  7. Hashempour H, Koehbach J, Daly NL, Ghassempour A, Gruber CW. Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry. Amino Acids. 2013;44(2):581–95. https://doi.org/10.1007/s00726-012-1376-x.

    Article  CAS  PubMed  Google Scholar 

  8. Hashempour H, Ghassempour A, Daly NL, Spengler B, Rompp A. Analysis of cyclotides in Viola ignobilis by nano liquid chromatography Fourier transform mass spectrometry. Protein Pept Lett. 2011;18(7):747–52. https://doi.org/10.2174/092986611795446030.

    Article  CAS  PubMed  Google Scholar 

  9. Bayareh M. An updated review on particle separation in passive microfluidic devices. Chem Eng Process-Process Intensif. 2020;153:107984. https://doi.org/10.1016/j.cep.2020.107984.

    Article  CAS  Google Scholar 

  10. Gao Y, Wu M, Lin Y, Xu J. Acoustic microfluidic separation techniques and bioapplications: a review. Micromachines. 2020;11(10):921. https://doi.org/10.3390/mi11100921.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Al-Faqheri W, Thio THG, Qasaimeh MA, Dietzel A, Madou M, Aa Al-Halhouli. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review. Microfluid Nanofluidics. 2017;21(6):1–23. https://doi.org/10.1007/s10404-017-1933-4.

    Article  Google Scholar 

  12. McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle separation: a review. Lab Chip. 2014;14(21):4139–58. https://doi.org/10.1039/C4LC00939H.

    Article  CAS  PubMed  Google Scholar 

  13. Jeon H, Kim S, Lim G. Electrical force-based continuous cell lysis and sample separation techniques for development of integrated microfluidic cell analysis system: a review. Microelectron Eng. 2018;198:55–72. https://doi.org/10.1016/j.mee.2018.06.010.

    Article  CAS  Google Scholar 

  14. Wu Z, Hjort K. Microfluidic hydrodynamic cell separation: a review. Micro Nanosyst. 2009;1(3):181–92. https://doi.org/10.2174/1876402910901030181.

    Article  CAS  Google Scholar 

  15. Yang R-J, Hou H-H, Wang Y-N, Fu L-M. Micro-magnetofluidics in microfluidic systems: a review. Sens Actuators B: Chem. 2016;224:1–15. https://doi.org/10.1016/j.snb.2015.10.053.

    Article  CAS  Google Scholar 

  16. De Jong J, Lammertink RG, Wessling M. Membranes and microfluidics: a review. Lab Chip. 2006;6(9):1125–39. https://doi.org/10.1039/B603275C.

    Article  PubMed  Google Scholar 

  17. Chen X, Shen J. Review of membranes in microfluidics. J Chem Technol Biotechnol. 2017;92(2):271–82. https://doi.org/10.1002/jctb.5105.

    Article  CAS  Google Scholar 

  18. Piotrowska M, Ciura K, Zalewska M, Dawid M, Correia B, Sawicka P, et al. Capillary zone electrophoresis of bacterial extracellular vesicles: a proof of concept. J Chromatogr A. 2020;1621:461047. https://doi.org/10.1016/j.chroma.2020.461047.

    Article  PubMed  Google Scholar 

  19. Ramachandran A, Huyke DA, Sharma E, Sahoo MK, Huang C, Banaei N, et al. Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2. Proc Natl Acad Sci. 2020;117(47):29518–25. https://doi.org/10.1073/pnas.2010254117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saar KL, Müller T, Charmet J, Challa PK, Knowles TP. Enhancing the resolution of micro free flow electrophoresis through spatially controlled sample injection. Anal Chem. 2018;90(15):8998–9005. https://doi.org/10.1021/acs.analchem.8b01205.

    Article  CAS  PubMed  Google Scholar 

  21. Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019–mid 2021). Electrophoresis. 2022;43(1–2):82–108. https://doi.org/10.1002/elps.202100243.

    Article  CAS  PubMed  Google Scholar 

  22. Sun W-W, Dai R-J, Li Y-R, Dai G-X, Liu X-J, Li B, et al. Separation of proteins and DNA by microstructure-changed microfuidic free flow electrophoresis chips. Acta Astronaut. 2020;166:573–8. https://doi.org/10.1016/j.actaastro.2018.11.016.

    Article  CAS  Google Scholar 

  23. Lu X, Liu C, Hu G, Xuan X. Particle manipulations in non-Newtonian microfluidics: a review. J Colloid Interface Sci. 2017;500:182–201. https://doi.org/10.1016/j.jcis.2017.04.019.

    Article  CAS  PubMed  Google Scholar 

  24. Dalili A, Samiei E, Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst. 2019;144(1):87–113. https://doi.org/10.1039/C8AN01061G.

    Article  CAS  Google Scholar 

  25. Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT. Microfluidics for cell separation. Med Biol Eng Comput. 2010;48(10):999–1014. https://doi.org/10.1007/s11517-010-0611-4.

    Article  PubMed  Google Scholar 

  26. Giordano BC, Burgi DS, Hart SJ, Terray A. On-line sample pre-concentration in microfluidic devices: a review. Anal Chim Acta. 2012;718:11–24. https://doi.org/10.1016/j.aca.2011.12.050.

    Article  CAS  PubMed  Google Scholar 

  27. Tetala KK, Vijayalakshmi M. A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta. 2016;906:7–21. https://doi.org/10.1016/j.aca.2015.11.037.

    Article  CAS  PubMed  Google Scholar 

  28. Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: a review. Anal Chim Acta. 2016;929:1–22. https://doi.org/10.1016/j.aca.2016.04.055.

    Article  CAS  PubMed  Google Scholar 

  29. Antfolk M, Laurell T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood—a review. Anal Chim Acta. 2017;965:9–35. https://doi.org/10.1016/j.aca.2017.02.017.

    Article  CAS  PubMed  Google Scholar 

  30. Sonker M, Sahore V, Woolley AT. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: a critical review. Anal Chim Acta. 2017;986:1–11. https://doi.org/10.1016/j.aca.2017.07.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sajeesh P, Sen AK. Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluidics. 2014;17(1):1–52. https://doi.org/10.1007/s10404-013-1291-9.

    Article  Google Scholar 

  32. Santana H, Silva J, Aghel B, Ortega-Casanova J. Review on microfluidic device applications for fluids separation and water treatment processes. SN Appl Sci. 2020;2(3):1–19. https://doi.org/10.1007/s42452-020-2176-7.

    Article  Google Scholar 

  33. Viefhues M, Eichhorn R, Fredrich E, Regtmeier J, Anselmetti D. Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis. Lab Chip. 2012;12(3):485–94. https://doi.org/10.1039/C1LC20610A.

    Article  CAS  PubMed  Google Scholar 

  34. Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst. 2017;142(11):1847–66. https://doi.org/10.1039/c7an00198c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun L, Zhu G, Yan X, Champion MM, Dovichi NJ. Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface. Proteomics. 2014;14(4–5):622–8. https://doi.org/10.1002/pmic.201300295.

    Article  CAS  PubMed  Google Scholar 

  36. Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent advances in microfluidic technology for bioanalysis and diagnostics. Anal Chem. 2021;93(1):311–31. https://doi.org/10.1021/acs.analchem.0c04366.

    Article  CAS  PubMed  Google Scholar 

  37. Avci H. Polimerler: Özellikleri Ve Uygulamalari, Publisher: ESOGU Yayinevi. 2021.

  38. Ghorbanpoor H, Dizaji AN, Akcakoca I, Blair EO, Ozturk Y, Hoskisson P, et al. A fully integrated rapid on-chip antibiotic susceptibility test—a case study for Mycobacterium smegmatis. Sens Actuators A: Phys. 2022;339:113515. https://doi.org/10.1016/j.sna.2022.113515.

    Article  CAS  Google Scholar 

  39. Didarian R, Ebrahimi A, Ghorbanpoor H, Bagheroghli H, Doğan Güzel F, Farhadpour M, et al. On chip microfluidic separation of cyclotides. Turk J Chem. 2023;47(1):253–62. https://doi.org/10.55730/1300-0527.3534.

    Article  CAS  PubMed  Google Scholar 

  40. Didarian R, Ebrahimi A, Ghorbanpoor H, Dizaji A, Hashempour H, Guzel F et al (2021) Investigation of polar and nonpolar cyclotides separation from violet extract through microfluidic chip. 8 International Fiber and Polymer Research Symposium; 18-19 June 2021; Eskişehir, Turkey2021. p 238-41.

  41. Shin SR, Zhang YS, Kim D-J, Manbohi A, Avci H, Silvestri A, et al. Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem. 2016;88(20):10019–27. https://doi.org/10.1021/acs.analchem.6b02028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Avci H, Doğan Güel F, Erol S, Akpek A. Recent advances in organ-on-a-chip technologies and future challenges: a review. Turk J Chem. 2018;42(3):587–610. https://doi.org/10.3906/kim-1611-35.

    Article  CAS  Google Scholar 

  43. Özel C, Koç Y, Topal AE, Ebrahimi A, Şengel T, Ghorbanpoor H et al (2021) Investigation of 3D culture of human adipose tissue-derived mesenchymal stem cells in a microfluidic platform. Eskişehir Tech Univ J Sci Technol A-Appl Sci Eng 22(8th ULPAS-Special Issue 2021):85–97. https://doi.org/10.18038/estubtda.983881.

  44. Özel C, Koç Y, Topal AE, Ebrahimi A, Şengel T, Ghorbanpoor H et al. Investigation of mesenchymal cells in the microfluidic cell culture device. 8th International Fiber and Polymer Research Symposium; 18–19 June 2021; ESkişehir, Turkey. 2021. p. 53–4. https://doi.org/10.5281/zenodo.5764365

  45. Mohammadigharebagh R, Tomsuk Ö, Ghorbanpoor H, Ebrahimi A, Abdullayeva N, Gasimzade N et al. Adsorption challenge in the PDMS-based microfluidic systems for drug screening application. 11th International Fiber and Polymer Research Symposium; 4–5 November; Gebze, Turkey. 2022. p. 222–6.

  46. Tetala KK, Swarts JW, Chen B, Janssen AE, Van Beek TA. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip. 2009;9(14):2085–92. https://doi.org/10.1039/B822106E.

    Article  CAS  PubMed  Google Scholar 

  47. Ebrahimi A. Patojenik bakterilerin tanisi için nanoesasli sensor platformlari. Hacettepe University, Fen Bilimleri Enstitüsü; 2017. p. 1–131. https://openaccess.hacettepe.edu.tr/xmlui/handle/11655/3992

  48. Pourjavadi A, Ebrahimi A, Barzegar S. Preparation and evaluation of bioactive and compatible starch based superabsorbent for oral drug delivery systems. J Drug Deliv Sci Technol. 2013;23(5):511–7. https://doi.org/10.1016/S1773-2247(13)50074-8.

    Article  CAS  Google Scholar 

  49. Moharrami S, Hashempour H. Comparative study of low-voltage electric field-induced, ultrasound-assisted and maceration extraction of phenolic acids. J Pharm Biomed Anal. 2021;202:114149. https://doi.org/10.1016/j.jpba.2021.114149.

    Article  CAS  PubMed  Google Scholar 

  50. Sanagi MM, Naim AA, Hussain A, Dzakaria N. Preparation and application of octadecylsilyl-silica adsorbents for chemical analysis. Malaysian J Anal Sci. 2001;7(2):337–43.

    Google Scholar 

  51. Grain L. Isolation of oxytocic peptides from Oldenlandia affinis by solvent extraction of tetraphenylborate complexes and chromatography on sephadex LH-20. Lloydia. 1973;36(2):207–8.

    CAS  PubMed  Google Scholar 

  52. Gran L. Oxytocic principles of Oldenlandia affinis. Lloydia. 1973;36(2):174–8.

    CAS  PubMed  Google Scholar 

  53. Gran L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol. 1973;33(5–6):400–8.

    Article  CAS  Google Scholar 

  54. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995;34(13):4147–58.

    Article  CAS  PubMed  Google Scholar 

  55. Göransson U, Luijendijk T, Johansson S, Bohlin L, Claeson P. Seven novel macrocyclic polypeptides from Viola arvensis. J Nat Prod. 1999;62(2):283–6. https://doi.org/10.1021/np9803878.

    Article  PubMed  Google Scholar 

  56. Hallock YF, Sowder RC, Pannell LK, Hughes CB, Johnson DG, Gulakowski R, et al. Cycloviolins A−D, anti-HIV macrocyclic peptides from Leonia cymosa1. J Org Chem. 2000;65(1):124–8. https://doi.org/10.1021/jo990952r.

    Article  CAS  PubMed  Google Scholar 

  57. Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell. 2008;20(9):2471–83. https://doi.org/10.1105/tpc.108.062331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Esmaeili MA, Abagheri-Mahabadi N, Hashempour H, Farhadpour M, Gruber CW, Ghassempour A. Viola plant cyclotide vigno 5 induces mitochondria-mediated apoptosis via cytochrome C release and caspases activation in cervical cancer cells. Fitoterapia. 2016;109:162–8. https://doi.org/10.1016/j.fitote.2015.12.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the Turkish Scientific and Technological Council (TÜBİTAK) for their support under the grant numbers of 119N608, 20AG003 and 20AG031. Thanks to the Iranian Ministry of Science Research and Technology (MSRT), University of Tabriz, and Azarbaijan Shahid Madani University for their support under the grant number of IRTU-99-24-800. Thanks to the Scientific Research Projects (BAP- the priority areas project (ONAP) for their support under the grant number of TOA-2022-2307 of Eskisehir Osmangazi University.

Funding

- Turkish Scientific and Technological Council (TÜBİTAK) under the grant number of 119N608, and TUBİTAK 1004- Regenerative and Restorative Medicine Research and Applications) under the grant numbers of 20AG003 and 20AG031, and Scientific Research Projects (BAP- the priority areas project (ONAP) under the grant number of TOA-2022-2307 of Eskisehir Osmangazi University.

- Iranian Ministry of Science Research and Technology (MSRT) under the grant number of IRTU-99-24-800.

Author information

Authors and Affiliations

Authors

Contributions

AE: investigation, conceptualization, methodology, formal analysis, writing original draft — review and editing. RD: formal analysis, data curation, writing — original draft. HG: software, writing original draft — review and editing. FDG: project administration, conceptualization, funding acquisition, writing — review and editing. HH: design the project, project administration, methodology, formal analysis, writing — review and editing. HA: design the project, supervision, conceptualization, funding acquisition, project administration, writing — review and editing.

Corresponding author

Correspondence to Huseyin Avci.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.57 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A., Didarian, R., Ghorbanpoor, H. et al. High-throughput microfluidic chip with silica gel‐C18 channels for cyclotide separation. Anal Bioanal Chem 415, 6873–6883 (2023). https://doi.org/10.1007/s00216-023-04966-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04966-3

Keywords

Navigation