Skip to main content
Log in

Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work aims to rapidly detect toxic alkaloids in traditional Chinese medicines (TCM) using laser desorption ionization mass spectrometry (LDI-MS). We systematically investigated twelve nanomaterials (NMs) as matrices and found that MoS2 and defect-rich-WO3 (D-WO3) were the best NMs for alkaloid detection. MoS2 and D-WO3 can be used directly as matrices dipped onto conventional ground steel target plates. Additionally, they can be conveniently fabricated as three-dimensional (3D) NM plates, where the MoS2 or D-WO3 NM is doped into resin and formed using a 3D printing process. We obtained good quantification of alkaloids using a chemothermal compound as an internal standard and detected related alkaloids in TCM extracts, Fuzi (Aconiti Lateralis Radix Praeparata), Caowu (Aconiti Kusnezoffii Radix), Chuanwu (Aconiti Radix), and Houpo (Magnoliae Officinalis Cortex). The work enabled the advantageous “dip and measure” method, demonstrating a simple and fast LDI-MS approach that achieves clean backgrounds for alkaloid detection. The 3D NM plates also facilitated mass spectrometry imaging of alkaloids in TCMs. This method has potential practical applications in medicine and food safety.

Graphical Abstract

Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bribi N. Pharmacological activity of alkaloids: a review. Asian J Bot. 2018; 1. https://doi.org/10.63019/ajb.v1i2.467.

  2. Lu M, Cai Z. Advances of MALDI-TOF MS in the analysis of traditional Chinese medicines. In: Applications of MALDI-TOF spectroscopy.2012. Top Curr Chem. pp 143-164. https://doi.org/10.1007/128_2012_383.

  3. Yu L, Xu Y, Feng H, Li SF. Separation and determination of toxic pyrrolizidine alkaloids in traditional Chinese herbal medicines by micellar electrokinetic chromatography with organic modifier. Electrophoresis. 2005;26(17):3397–404. https://doi.org/10.1002/elps.200500233.

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Zhao H, Wang X, Lee FS, Yang H, Zheng L. Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis. 2008;29(10):2135–47. https://doi.org/10.1002/elps.200700797.

    Article  CAS  PubMed  Google Scholar 

  5. Ranieri TL, Ciolino LA. Rapid selective screening and determination of ephedrine alkaloids using GC-MS footnote mark. Phytochem Anal. 2008;19(2):127–35. https://doi.org/10.1002/pca.1025.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Jin Y, Dong J, Xiao Y, Feng J, Xue X, Zhang X, Liang X. Systematic screening and characterization of tertiary and quaternary alkaloids from corydalis yanhusuo W.T. Wang using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Talanta. 2009;78(2):513–22. https://doi.org/10.1016/j.talanta.2008.12.002.

    Article  CAS  PubMed  Google Scholar 

  7. Saptarini NM. Herawati IE The colorimetric method for determination of total alkaloids and flavonoids content in Indonesian black nightshade (Solanum nigrum L.). J Adv Pharm Educ Res. 2019;3:80–4.

    Google Scholar 

  8. Huang YF, He F, Wang CJ, Xie Y, Zhang YY, Sang Z, Qiu P, Luo P, Xiao SY, Li J, Wu FC, Liu L, Zhou H. Discovery of chemical markers for improving the quality and safety control of Sinomenium acutum stem by the simultaneous determination of multiple alkaloids using UHPLC-QQQ-MS/MS. Sci Rep. 2020;10(1):14182. https://doi.org/10.1038/s41598-020-71133-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, van der Heijden R, Spijksma G, Reijmers T, Wang M, Xu G, Hankemeier T, van der Greef J. Alkaloid profiling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrometry with liquid chromatography-mass spectrometry. J Chromatogr A. 2009;1216(11):2169–78. https://doi.org/10.1016/j.chroma.2008.11.077.

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Cui C, Zhao H, Zhou G, Qin L, Li X, Chen L, Wang X, Wan Y. In-situ detection and imaging of Areca catechu fruit alkaloids by MALDI-MSI. Ind Crops Prod. 2022;188:115533. https://doi.org/10.1016/j.indcrop.2022.115533.

    Article  CAS  Google Scholar 

  11. Chiang CK, Chen WT, Chang HT. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev. 2011;40(3):1269–81. https://doi.org/10.1039/c0cs00050g.

    Article  CAS  PubMed  Google Scholar 

  12. Khajavinia A, El-Aneed A. Carbon-based nanoparticles and their surface-modified counterparts as MALDI matrices. Anal Chem. 2023;95(1):100–14. https://doi.org/10.1021/acs.analchem.2c04537.

    Article  CAS  PubMed  Google Scholar 

  13. Lin Z, Cai Z. Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. Mass Spectrom Rev. 2018;37(5):681–96. https://doi.org/10.1002/mas.21558.

    Article  CAS  PubMed  Google Scholar 

  14. Sunner J, Dratz E, Chen YC. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem. 1995;67(23):4335–42. https://doi.org/10.1021/ac00119a021.

    Article  CAS  PubMed  Google Scholar 

  15. Picca RA, Calvano CD, Cioffi N, Palmisano F. Mechanisms of nanophase-induced desorption in LDI-MS A short review. Nanomaterials. 2017;7(4):75. https://doi.org/10.3390/nano7040075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured substrates as matrices for surface assisted laser desorption/ionization mass spectrometry: a progress report from material research to biomedical applications. Small Methods. 2021;5(10):e2100762. https://doi.org/10.1002/smtd.202100762.

    Article  CAS  PubMed  Google Scholar 

  17. Chuang W, Lu-Yuan Q, Dong-Mei L, Jin-Juan X, Lei G, Li T. The application advance of nanomaterials in the LDI-MS technique. Chin J Anal Chem. 2023;51(2):172–83. https://doi.org/10.19756/j.issn.0253-3820.221328.

    Article  Google Scholar 

  18. Wang D, Huang X, Li J, He B, Liu Q, Hu L, Jiang G. 3D printing of graphene-doped target for “matrix-free” laser desorption/ionization mass spectrometry. Chem Comm. 2018;54(22):2723–6. https://doi.org/10.1039/c7cc09649f.

    Article  CAS  PubMed  Google Scholar 

  19. Zhai X-P, Gao L-F, Zhang H, Peng Y, Zhang X-D, Wang Q, Zhang H-L. Defect engineering of ultrathin WO3 nanosheets: implications for nonlinear optoelectronic devices. ACS Appl Nano Mater. 2022;5(1):1169–77. https://doi.org/10.1021/acsanm.1c03791.

    Article  CAS  Google Scholar 

  20. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011;11(12):5111–6. https://doi.org/10.1021/nl201874w.

    Article  CAS  PubMed  Google Scholar 

  21. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040–2. https://doi.org/10.1126/science.1116275.

    Article  CAS  PubMed  Google Scholar 

  22. Dong Y, Hu T, Pudukudy M, Su H, Jiang L, Shan S, Jia Q. Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(Fe) and NH2-MIL-101(Fe) for enhanced tetracycline adsorption. Mater Chem Phys. 2020;251:123060. https://doi.org/10.1016/j.matchemphys.2020.123060.

    Article  CAS  Google Scholar 

  23. Li H, Guo L, Huang A, Xu H, Liu X, Ding H, Dong J, Li J, Wang C, Su X, Ge X, Sun L, Bai C, Shen X, Fang T, Li Z, Zhou Y, Zhan L, Li S, Xie J, Shao N. Nanoparticle-conjugated aptamer targeting hnRNP A2/B1 can recognize multiple tumor cells and inhibit their proliferation. Biomaterials. 2015;63:168–76. https://doi.org/10.1016/j.biomaterials.2015.06.013.

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Li Y, Zhang P, Yang B, Wu H, Guo X, Li Y, Zhang Y. Sensitive UHPLC-MS/MS quantitation and pharmacokinetic comparisons of multiple alkaloids from Fuzi- Beimu and single herb aqueous extracts following oral delivery in rats. J Chromatogr B. 2017;1058:24–31. https://doi.org/10.1016/j.jchromb.2017.05.016.

    Article  CAS  Google Scholar 

  25. McLean JA, Stumpo KA, Russell DH. Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc. 2005;127(15):5304–5. https://doi.org/10.1021/ja043907w.

    Article  CAS  PubMed  Google Scholar 

  26. Chen WY, Chen YC. Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal Bioanal Chem. 2006;386(3):699–704. https://doi.org/10.1007/s00216-006-0427-0.

    Article  CAS  PubMed  Google Scholar 

  27. Yang X, Hu XK, Loboda AV, Lipson RH. Microstructured tungsten oxide: a generic desorption/ionization substrate for mass spectrometry. Adv Mater. 2010;22(40):4520–3. https://doi.org/10.1002/adma.201001627.

    Article  CAS  PubMed  Google Scholar 

  28. Kim YK, Wang LS, Landis R, Kim CS, Vachet RW, Rotello VM. A layer-by-layer assembled MoS2 thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. Nanoscale. 2017;9(30):10854–60. https://doi.org/10.1039/c7nr02949g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal Chem. 2016;88(18):8926–30. https://doi.org/10.1021/acs.analchem.6b02732.

    Article  CAS  PubMed  Google Scholar 

  30. Yamada Y, Murase M, Yatsugi K, Mizoshita N. Laser desorption/ionization mass spectrometry using TiO2 nanopillar array substrates with tunable surface roughness and wettability. ACS Appl Nano Mater. 2021;4(12):13884–95. https://doi.org/10.1021/acsanm.1c03222.

    Article  CAS  Google Scholar 

  31. Muller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: a review. Mass Spectrom Rev. 2022;41(3):373–420. https://doi.org/10.1002/mas.21670.

    Article  CAS  PubMed  Google Scholar 

  32. Bian J, Olesik SV. Ion desorption efficiency and internal energy transfer in polymeric electrospun nanofiber-based surface-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem. 2020;412(4):923–31. https://doi.org/10.1007/s00216-019-02315-x.

    Article  CAS  PubMed  Google Scholar 

  33. Sakai R, Ichikawa T, Kondo H, Ishikawa K, Shimizu N, Ohta T, Hiramatsu M, Hori M. Effects of carbon nanowalls (CNWs) substrates on soft ionization of low-molecular-weight organic compounds in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Nanomaterials. 2021;11(2):262. https://doi.org/10.3390/nano11020262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ng KM, Lai SK, Chen Z, Cheng YH, Tang HW, Huang W, Su Y, Yang J. Harvesting more energetic photoexcited electrons from closely packed gold nanoparticles. J Am Soc Mass Spectrom. 2021;32(3):815–24. https://doi.org/10.1021/jasms.0c00480.

    Article  CAS  PubMed  Google Scholar 

  35. Wang P, Giese RW. Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J Chromatogr A. 2017;1486:35–41. https://doi.org/10.1016/j.chroma.2017.01.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu W, Liang Z, Zhao Z, Cai Z. Direct analysis of alkaloid profiling in plant tissue by using matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 2007;42(1):58–69. https://doi.org/10.1002/jms.1138.

    Article  CAS  PubMed  Google Scholar 

  37. Guo K, Tong C, Fu Q, Xu J, Shi S, Xiao Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J Pharm Biomed Anal. 2019;170:153–60. https://doi.org/10.1016/j.jpba.2019.03.044.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Nos. 21974152, 81873397).

Author information

Authors and Affiliations

Authors

Contributions

C. Wang conducted the experiments, analyzed data, interpreted the results, and wrote the primary manuscript. X. Zhai and Q. Wang prepared six NMs with full characterization. L. Hu offered the first batch of 3D RGO plates and according 3D fabrication experience. L. Qin, D. Li, and J. Xue assisted with the experiments and provided valuable suggestions. L. Guo supervised the experiments, revised the manuscript, and provided financial support; L. Tang and J. Xie reviewed the manuscript and approved it for the final release; and L. Tang also provided financial support. All authors provided critical feedback, helped shape the research, and authorized the final manuscript.

Corresponding authors

Correspondence to Qiang Wang, Lei Guo or Li Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2532 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Qin, LY., Li, DM. et al. Doped nanomaterial facilitates 3D printing target plate for rapid detection of alkaloids in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 415, 6825–6838 (2023). https://doi.org/10.1007/s00216-023-04961-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04961-8

Keywords

Navigation