Skip to main content
Log in

Analytical methods based on liquid chromatography for the analysis of albumin adducts involved in retrospective biomonitoring of exposure to mustard agents

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The objective of the present review is to list, describe, compare, and critically analyze the main procedures developed in the last 20 years for the analysis of digested alkylated peptides, resulting from the adduction of albumin by different mustard agents, and that can be used as biomarkers of exposure to these chemical agents. While many biomarkers of sulfur mustard, its analogues, and nitrogen mustards can easily be collected in urine such as their hydrolysis products, albumin adducts require blood or plasma collection to be analyzed. Nonetheless, albumin adducts offer a wider period of detectability in human exposed patients than urine found biomarkers with detection up to 25 days after exposure to the chemical agent. The detection of these digested alkylated peptides of adducted albumin constitutes unambiguous proof of exposure. However, their determination, especially when they are present at very low concentration levels, can be very difficult due to the complexity of the biological matrices. Therefore, numerous sample preparation procedures to extract albumin and to recover alkylated peptides after a digestion step using enzymes have been proposed prior to the analysis of the targeted peptides by liquid chromatography coupled to mass spectrometry method with or without derivatization step. This review describes and compares the numerous procedures including a number of different steps for the extraction and purification of adducted albumin and its digested peptides described in the literature to achieve detection limits for biological samples exposed to sulfur mustard, its analogues, and nitrogen mustards in the ng/mL range.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

[N1-HETE]-His:

N1-[2-[(2-Hydroxyethyl)thio]ethyl]-histidine

[N3-HETE]-His:

N3-[2-[(2-Hydroxyethyl)thio]ethyl]-histidine

ACN:

Acetonitrile

AE-[HETE]V-SKL:

Alanine-glutamic acid-[2-[(2-hydroxyethyl)thio]ethyl]-valine-serine-lysine-leucine

CWC:

Chemical Weapons Convention

Cys34:

34-Cysteine residue

DNA:

Desoxyribonucleic acid

GSH:

Glutathione

HETE:

Hydroxyethylthioethyl

HETE-Asp:

[2-[(2-Hydroxyethyl)thio]ethyl]asparagine

HETE-CP:

[2-[(2-Hydroxyethyl)thio]ethyl]-cysteine-proline

HETE-CPF:

[2-[(2-Hydroxyethyl)thio]ethyl]-cysteine-proline-phenylalanine

HETE-CPY:

[2-[(2-Hydroxyethyl)thio]ethyl]-cysteine-proline-tyrosine

HETE-Glu:

[2-[(2-Hydroxyethyl)thio]ethyl]-glutamine

HETE-Lys:

[2-[(2-Hydroxyethyl)thio]ethyl]-lysine

IMER:

Immobilized enzyme reactor

LC-MS:

Liquid chromatography coupled to mass spectrometry

LOD:

Limit of detection

LQQC*PFED:

Leucine-glutamine-glutamine-[2-[(2-hydroxyethyl)thio]ethyl]-cysteine-proline-phenylalanine-glutamic acid-aspartic acid

LQQC*PFEDHVKL:

Leucine-glutamine-glutamine-[2-[(2-hydroxyethyl)thio]ethyl]-cysteine-proline-phenylalanine-glutamic acid-aspartic acid-histidine-valine-lysine-leucine

RBCs:

Red blood cells

SM:

Sulfur mustard

SMO:

Sulfur mustard sulfoxide

TDG:

Thiodiglycol

TDGO:

Thiodiglycol sulfoxide

TRIS:

Trisaminomethane

YLQQC*PFED:

Tyrosine-leucine-glutamine-glutamine-[2-[(2-hydroxyethyl)thio]ethyl]-cysteine-proline-phenylalanine-glutamic acid-aspartic acid

References

  1. Fitzgerald GJ. Chemical warfare and medical response during World War I. Am J Public Health. 2008;98(4):611–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ruhl CM, Park SJ, Danisa O, Morgan RF, Papirmsister B, Sidell FR, et al. A serious skin sulfur mustard burn from an artillery shell. J Emerg Med. 1994;12(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  3. Barr JR, Pierce CL, Smith JR, Capacio BR, Woolfitt AR, Solano MI, et al. Analysis of urinary metabolites of sulfur mustard in two individuals after accidental exposure. J Anal Toxicol. 2008;32(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  4. Smith JR, Capacio BR, Korte WD, Woolfitt AR, Barr JR. Analysis for plasma protein biomarkers following an accidental human exposure to sulfur mustard. J Anal Toxicol. 2008;32(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  5. Quillen C. The Islamic State’s evolving chemical arsenal. Stud Confl Terror. 2016;39(11):1019–30.

    Article  Google Scholar 

  6. John H, Koller M, Worek F, Thiermann H, Siegert M. Forensic evidence of sulfur mustard exposure in real cases of human poisoning by detection of diverse albumin-derived protein adducts. Arch Toxicol. 2019;93(7):1881–91.

    Article  CAS  PubMed  Google Scholar 

  7. Sezigen S, Ivelik K, Ortatatli M, Almacioglu M, Demirkasimoglu M, Eyison RK, et al. Victims of chemical terrorism, a family of four who were exposed to sulfur mustard. Toxicol Lett. 2019;303:9–15.

    Article  CAS  PubMed  Google Scholar 

  8. Wattana M, Bey T. Mustard Gas or sulfur mustard: an old chemical agent as a new terrorist threat. Prehospital Disaster Med. 2009;24(01):19–29.

    Article  PubMed  Google Scholar 

  9. Sezigen S, Eyison RK, Kenar L. Bioanalytical verification of sulfur mustard exposure in a syrian family. GULHANE Med J. 2019;61(2):64.

    Article  Google Scholar 

  10. Sezigen S, Eyison RK, Kilic E, Kenar L. Evidence of sulfur mustard exposure in victims of chemical terrorism by detection of urinary β-lyase metabolites. Clin Toxicol. 2020;58(1):36–44.

    Article  CAS  Google Scholar 

  11. Noort D, Verheij ER, Hulst AG, De Jong LPA, Benschop HP. Characterization of sulfur mustard induced structural modifications in human hemoglobin by liquid chromatography−tandem mass spectrometry. Chem Res Toxicol. 1996;9(4):781–7.

    Article  CAS  PubMed  Google Scholar 

  12. Riches J, Read RW, Black RM. Analysis of the sulphur mustard metabolites thiodiglycol and thiodiglycol sulphoxide in urine using isotope-dilution gas chromatography–ion trap tandem mass spectrometry. J Chromatogr B. 2007;845(1):114–20.

    Article  CAS  Google Scholar 

  13. Li C, Chen J, Liu Q, Xie J, Li H. Simultaneous quantification of seven plasma metabolites of sulfur mustard by ultra high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2013;917–918:100–7.

    Article  Google Scholar 

  14. Zhang Y, Yue L, Nie Z, Chen J, Guo L, Wu B, et al. Simultaneous determination of four sulfur mustard–DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2014;961:29–35.

    Article  CAS  Google Scholar 

  15. Noort D, Fidder A, Benschop HP, De Jong LPA, Smith JR. Procedure for monitoring exposure to sulfur mustard based on modified edman degradation of globin. J Anal Toxicol. 2004;28(5):311–5.

    Article  CAS  PubMed  Google Scholar 

  16. Xu H, Nie Z, Zhang Y, Li C, Yue L, Yang W, et al. Four sulfur mustard exposure cases: overall analysis of four types of biomarkers in clinical samples provides positive implication for early diagnosis and treatment monitoring. Toxicol Rep. 2014;1:533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Capacio BR, Smith JR, DeLion MT, Anderson DR, Graham JS, Platoff GE, et al. Monitoring sulfur mustard exposure by gas chromatography-mass spectrometry analysis of thiodiglycol cleaved from blood proteins. J Anal Toxicol. 2004;28(5):306–10.

    Article  CAS  PubMed  Google Scholar 

  18. Black RM, Brewster K, Clarke RJ, Hambrook JL, Harrison JM, Howells DJ. Biological fate of sulphur mustard, 1,1’-thiobis(2-chloroethane): isolation and identification of urinary metabolites following intraperitoneal administration to rat. Xenobiotica. 1992;22(4):405–18.

    Article  CAS  PubMed  Google Scholar 

  19. Black RM, Read RW. Biological fate of sulphur mustard, 1,1′-thiobis(2-chloroethane): identification of β-lyase metabolites and hydrolysis products in human urine. Xenobiotica. 1995;25(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  20. von Stedingk H, Osterman-Golkar S, Törnqvist M. Chapter 4. Biomarkers of exposure: hemoglobin adducts. In: Knudsen L, Merlo DF, éditeurs. Issues in toxicology [Internet]. Cambridge: Royal Society of Chemistry; 2011. p. 1‑22.

  21. van der Schans GP, Noort D, Mars-Groenendijk RH, Fidder A, Chau LF, de Jong LPA, et al. Immunochemical detection of sulfur mustard adducts with keratins in the stratum corneum of human skin. Chem Res Toxicol. 2002;15(1):21–5.

    Article  PubMed  Google Scholar 

  22. Boyer AE, Ash D, Barr DB, Young CL, Driskell WJ, Whitehead RD, et al. Quantitation of the sulfur mustard metabolites 1,1′-sulfonylbis[2-(methylthio)ethane] and thiodiglycol in urine using isotope-dilution gas chromatography-tandem mass spectrometry. J Anal Toxicol. 2004;28(5):327–32.

    Article  CAS  PubMed  Google Scholar 

  23. Noort D, Black RM. Methods for retrospective detection of exposure to toxic scheduled chemicals. Part B: mass spectrometric and immunochemical analysis of covalent adducts to proteins and DNA. In: Mesilaakso M, éditeur. Chemical Weapons Convention chemicals analysis [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2006. p. 433‑51.

  24. Siegert M, Gandor F, Kranawetvogl A, Börner H, Thiermann H, John H. Methionine 329 in human serum albumin: a novel target for alkylation by sulfur mustard. Drug Test Anal. 2019;11(5):659–68.

    Article  CAS  PubMed  Google Scholar 

  25. Orlova OI, Karakashev GV, Savel’eva EI. Simultaneous determination of sulfur mustard adducts with guanine and acetylcysteine in urine by high-resolution high-performance liquid chromatography–tandem mass spectrometry. J Anal Chem. 2020;75(8):1011–7.

    Article  CAS  Google Scholar 

  26. Törnqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P. Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B. 2002;778(1–2):279–308.

    Article  Google Scholar 

  27. Benschop HP, Van Der Schans GP. Verification, dosimetry, and biomonitoring of mustard gas exposure via immunochemical detection of mustard gas adducts to DNA and proteins. Prins Maurits Laboratorium Tno Rijswijk (Netherlands); 1993.

  28. Meloun B, Morávek L, Kostka V. Complete amino acid sequence of human serum albumin. FEBS Lett. 1975;58(1–2):134–7.

    Article  CAS  PubMed  Google Scholar 

  29. Noort D, Fidder A, Hulst AG, de Jong LPA, Benschop HP. Diagnosis and dosimetry of exposure to sulfur mustard: development of a standard operating procedure for mass spectrometric analysis of haemoglobin adducts: exploratory research on albumin and keratin adducts. J Appl Toxicol. 2001;20(S1):S187–92.

    Article  Google Scholar 

  30. Noort D, Fidder A, Hulst AG, Woolfitt AR, Ash D, Barr JR. Retrospective detection of exposure to sulfur mustard: improvements on an assay for liquid chromatography-tandem mass spectrometry analysis of albumin/sulfur mustard adducts. J Anal Toxicol. 2004;28(5):333–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bechtold WE, Willis JK, Sun JD, Griffith WC, Reddy TV. Biological markers of exposure to benzene: 5-phenylcysteine in albumin. Carcinogenesis. 1992;13(7):1217–20.

    Article  CAS  PubMed  Google Scholar 

  32. Noort D, Hulst AG, de Jong LP, Benschop HP. Alkylation of human serum albumin by sulfur mustard in vitro and in vivo: mass spectrometric analysis of a cysteine adduct as a sensitive biomarker of exposure. Chem Res Toxicol. 1999;12(8):715–21.

    Article  CAS  PubMed  Google Scholar 

  33. Noort D, Fidder A, Degenhardt-Langelaan CEAM, Hulst AG. Retrospective detection of sulfur mustard exposure by mass spectrometric analysis of adducts to albumin and hemoglobin: an in vivo study. J Anal Toxicol. 2008;32(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  34. Yeo TH, Ho ML, Loke WK. Development of a liquid chromatography-multiple reaction monitoring procedure for concurrent verification of exposure to different forms of mustard agents. J Anal Toxicol. 2008;32(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  35. Pantazides BG, Quiñones-González J, Rivera Nazario DM, Crow BS, Perez JW, Blake TA, et al. A quantitative method to detect human exposure to sulfur and nitrogen mustards via protein adducts. J Chromatogr B. 2019;1121:9–17.

    Article  CAS  Google Scholar 

  36. Andacht TM, Pantazides BG, Crow BS, Fidder A, Noort D, Thomas JD, et al. An enhanced throughput method for quantification of sulfur mustard adducts to human serum albumin via isotope dilution tandem mass spectrometry. J Anal Toxicol. 2014;38(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  37. Liu C, Liang L, Xiang Y, Yu H, Zhou S, Xi H, et al. An improved method for retrospective quantification of sulfur mustard exposure by detection of its albumin adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407(23):7037–46.

    Article  CAS  PubMed  Google Scholar 

  38. Pantazides BG, Crow BS, Garton JW, Quiñones-González JA, Blake TA, Thomas JD, et al. Simplified method for quantifying sulfur mustard adducts to blood proteins by ultrahigh pressure liquid chromatography–isotope dilution tandem mass spectrometry. Chem Res Toxicol. 2015;28(2):256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Braun AV, Rybal’chenko IV, Ponsov MA, Stavitskaya YAV, Tikhomirov LA, Grechukhin AP. Optimization of a method for the determination of a mustard gas biomarker in human blood plasma by liquid chromatography–high-resolution mass spectrometry. J Anal Chem. 2017;72(3):303–8.

    Article  CAS  Google Scholar 

  40. Gandor F, Gawlik M, Thiermann H, John H. Evidence of sulfur mustard exposure in human plasma by LC-ESI-MS-MS detection of the albumin-derived alkylated HETE-CP dipeptide and chromatographic investigation of its cis/trans isomerism. J Anal Toxicol. 2015;39(4):270–9.

    Article  CAS  PubMed  Google Scholar 

  41. John H, Siegert M, Gandor F, Gawlik M, Kranawetvogl A, Karaghiosoff K, et al. Optimized verification method for detection of an albumin-sulfur mustard adduct at Cys34 using a hybrid quadrupole time-of-flight tandem mass spectrometer after direct plasma proteolysis. Toxicol Lett. 2016;244:103–11.

    Article  CAS  PubMed  Google Scholar 

  42. Chen B, Yu HL, Liu SL, Liu CC, Liang LH, Li XH, et al. A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2019;411(15):3405–15.

    Article  CAS  PubMed  Google Scholar 

  43. John H, Richter A, Thiermann H. Evidence of sulfur mustard poisoning by detection of the albumin-derived dipeptide biomarker C(-HETE)P after nicotinylation. Drug Test Anal. 2021;13(9):1593–602.

    Article  CAS  PubMed  Google Scholar 

  44. Richter A, Siegert M, Thiermann H, John H. Alkylated albumin-derived dipeptide C(-HETE)P derivatized by propionic anhydride as a biomarker for the verification of poisoning with sulfur mustard. Anal Bioanal Chem. 2021;413(19):4907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. John H, Hörmann P, Schrader M, Thiermann H. Alkylated glutamic acid and histidine derived from protein-adducts indicate exposure to sulfur mustard in avian serum. Drug Test Anal. 2022;14(6):1140–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chen B, Ren Z, Zhang T, Yu H, Shu Z, Liu C, et al. Simultaneous quantification of multiple amino acid adducts from sulfur mustard-modified human serum albumin in plasma at trace exposure levels by ultra-high performance liquid chromatography–triple quadrupole mass spectrometry after propionyl derivatization. J Chromatogr A. 2022;1678: 463354.

    Article  CAS  PubMed  Google Scholar 

  47. Carol-Visser J, van der Schans M, Fidder A, Hulst AG, van Baar BLM, Irth H, et al. Development of an automated on-line pepsin digestion–liquid chromatography–tandem mass spectrometry configuration for the rapid analysis of protein adducts of chemical warfare agents. J Chromatogr B. 2008;870(1):91–7.

    Article  CAS  Google Scholar 

  48. Young CL, Woolfitt AR, McWilliams LG, Moura H, Boyer AE, Barr JR. Survey of albumin purification methods for the analysis of albumin-organic toxicant adducts by liquid chromatography-electrospray ionization-tandem mass spectrometry. Proteomics. 2005;5(18):4973–9.

    Article  CAS  PubMed  Google Scholar 

  49. Mahany T, Khirabadi BS, Gersten DM, Kurian P, Ledley RS, Ramwell PW. Studies on the affinity chromatography of serum albumins from human and animal plasmas. Comp Biochem Physiol Part B Comp Biochem. 1981;68(2):319–23.

    Article  Google Scholar 

  50. Hallez F, Combès A, Desoubries C, Bossée A, Pichon V. Analysis of long-lived sulfur mustard-human hemoglobin adducts in blood samples by red blood cells lysis and on-line coupling of digestion on an immobilized-trypsin reactor with liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2022;1665: 462830.

    Article  CAS  PubMed  Google Scholar 

  51. Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H. Proteinase K from Tritirachium album Limber. Eur J Biochem. 1974;47(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  52. Camperi J, Pichon V, Delaunay N. Separation methods hyphenated to mass spectrometry for the characterization of the protein glycosylation at the intact level. J Pharm Biomed Anal. 2020;178: 112921.

    Article  CAS  PubMed  Google Scholar 

  53. Mowrer J, Törnqvist M, Jensen S, Ehrenberg L. Modified Edman degradation applied to hemoglobin for monitoring occupational exposure to alkylating agents. Toxicol Environ Chem. 1986;11(3):215–31.

    Article  CAS  Google Scholar 

  54. Hallez F, Combès A, Desoubries C, Bossée A, Pichon V. Development of an immobilized-trypsin reactor coupled to liquid chromatography and tandem mass spectrometry for the analysis of human hemoglobin adducts with sulfur mustard. J Chromatogr B. 2021;1186: 123031.

    Article  CAS  Google Scholar 

  55. Hemme M, Fidder A, van der Riet-van OD, van der Schans MJ, Noort D. Mass spectrometric analysis of adducts of sulfur mustard analogues to human plasma proteins: approach towards chemical provenancing in biomedical samples. Anal Bioanal Chem. 2021;413(15):4023–36.

    Article  CAS  PubMed  Google Scholar 

  56. Blum MM, Richter A, Siegert M, Thiermann H, John H. Adduct of the blistering warfare agent sesquimustard with human serum albumin and its mass spectrometric identification for biomedical verification of exposure. Anal Bioanal Chem. 2020;412(28):7723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Piórkowska E, Musijowski J, Buś-Kwaśnik K, Rudzki PJ. Is a deuterated internal standard appropriate for the reliable determination of olmesartan in human plasma? J Chromatogr B. 2017;1040:53–9.

    Article  Google Scholar 

  58. Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res Genet Toxicol. 1994;318(3):205–26.

    Article  CAS  Google Scholar 

  59. Wang QQ, Begum RA, Day VW, Bowman-James K. Sulfur, oxygen, and nitrogen mustards: stability and reactivity. Org Biomol Chem. 2012;10(44):8786.

    Article  CAS  PubMed  Google Scholar 

  60. Noort D, Hulst A, Jansen R. Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin. Arch Toxicol. 2002;76(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  61. Steinritz D, Striepling E, Rudolf KD, Schröder-Kraft C, Püschel K, Hullard-Pulstinger A, et al. Medical documentation, bioanalytical evidence of an accidental human exposure to sulfur mustard and general therapy recommendations. Toxicol Lett. 2016;244:112–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French Defense Procurement Agency for funding this research study.

Funding

This work was supported by DGA, CBRN Defense (Grant Number 2022470173).

Author information

Authors and Affiliations

Authors

Contributions

Lorenzo Avigo, Florine Hallez: writing the original draft. Charlotte Desoubries, Anne Bossée, Christine Albaret, Audrey Combès, Valérie Pichon: visualization, methodology, writing — review and editing. Charlotte Desoubries, Valerie Pichon: project administration, funding acquisition, supervision.

Corresponding author

Correspondence to Valérie Pichon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in (Bio-)Analytical Chemistry: Reviews and Trends Collection 2024.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avigo, L., Hallez, F., Combès, A. et al. Analytical methods based on liquid chromatography for the analysis of albumin adducts involved in retrospective biomonitoring of exposure to mustard agents. Anal Bioanal Chem 416, 2173–2188 (2024). https://doi.org/10.1007/s00216-023-04925-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04925-y

Keywords

Navigation