Skip to main content
Log in

A strategy to enhance SERS detection sensitivity through the use of SiO2 beads in a 1536-well plate

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of rapid and accurate assays is crucial to prevent the rapid spread of highly contagious respiratory infections such as coronavirus (COVID-19). Here, we developed a surface-enhanced Raman scattering (SERS)–enzyme-linked immunosorbent assay (ELISA) method that allows for the screening of multiple patient samples with high sensitivity on a 1536-well plate. As the well number on the ELISA well plate increases from 96 to 1536, the throughput of the assay increases but the sensitivity decreases due to the low number of biomarkers and the increase in non-specific binding species. To address this problem, silica (SiO2) beads were used to increase the surface-to-volume ratio and the loading density of biomarkers, thereby enhancing sensitivity. Using a three-dimensional gold nanoparticle (AuNP)@SiO2 SERS assay platform on a 1536-well plate, an immunoassay for the nucleocapsid protein biomarker of SARS-CoV-2 was performed and the limit of detection (LoD) decreased from 273 to 7.83 PFU/mL compared to using a two-dimensional assay platform with AuNPs. The proposed AuNPs@SiO2 SERS immunoassay (SERS-IA) platform is expected to dramatically decrease the false-negative diagnostic rate of the currently used lateral flow assay (LFA) or ELISA by enabling the positive diagnosis of patients with low virus concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Self CH, Cook DB. Advances in immunoassay technology. Curr Opin Biotechnol. 1996;7(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Liu F, Lee LP. Quantitative and ultrasensitive in situ immunoassay technology for SARS-CoV-2 detection in saliva. Sci Adv. 2022;8(21):eabn3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marquette CA, Corgier BP, Blum LJ. Recent advances in multiplex immunoassays. Bioanalysis. 2012;4(8):927–36.

    Article  CAS  PubMed  Google Scholar 

  4. Dincer C, Bruch R, Costa-Rama E, et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater. 2019;31(30):1806739.

    Article  Google Scholar 

  5. Wu L, Li G, Xu X, et al. Application of nano-ELISA in food analysis: recent advances and challenges. Trac Trends Anal Chem. 2019;113:140–56.

    Article  CAS  Google Scholar 

  6. Chauhan R, Singh J, Sachdev T, et al. Recent advances in mycotoxins detection. Biosens Bioelectron. 2016;81:532–45.

    Article  CAS  PubMed  Google Scholar 

  7. Bates TA, Weinstein JB, Leier HC, et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. 2021;34(7):108737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nguyen D, Skelly D, Goonawardane N. A novel immunofluorescence assay for the rapid serological detection of SARS-CoV-2 infection. Viruses. 2021;13(5):747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen H, Park SG, Choi N, et al. Sensitive detection of SARS-CoV-2 using a SERS-based aptasensor. ACS Sens. 2021;6(6):2378–85.

    Article  CAS  PubMed  Google Scholar 

  10. Joung Y, Kim K, Lee S, et al. Rapid and accurate on-site immunodiagnostics of highly contagious severe acute respiratory syndrome coronavirus 2 using portable surface-enhanced Raman scattering-lateral flow assay reader. ACS Sens. 2022;7(11):3470–80.

    Article  CAS  PubMed  Google Scholar 

  11. Arnaout R, Lee RA, Lee GR, et al. SARS-CoV2 testing: the limit of detection matters. BioRxiv. 2020;

  12. Lee JS, Goldstein JM, et al. CDC 2019-novel coronavirus real-time RT-PCR diagnostic panel. PLoS One. 2021;16(12):e0260487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Park SK, Joung Y, et al. SERS-based dual-mode DNA aptasensors for rapid classification of SARS-CoV-2 and influenza A/H1N1 infection. Sens Actuators B Chem. 2022;355:131324.

    Article  CAS  PubMed  Google Scholar 

  14. Yu Q, Wu Y, Kang T, et al. Development of surface-enhanced Raman scattering-based immunoassay platforms using hollow Au nanostars for reliable SARS-CoV-2 diagnosis. Bull Kor Chem Soc. 2021;42(12):1699–705.

    Article  CAS  Google Scholar 

  15. Hsu SW, Rodarte AL, Som M, et al. Colloidal plasmonic nanocomposites: from fabrication to optical function. Chem Rev. 2018;118(6):3100–20.

    Article  CAS  PubMed  Google Scholar 

  16. Guerrini L, Graham D. Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev. 2012;41(21):7085–107.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Zong S, Wu L, et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev. 2017;117(12):7910–63.

    Article  CAS  PubMed  Google Scholar 

  18. Xu K, Zhou R, Takei K, et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci. 2019;6(16):1900925.

    Article  Google Scholar 

  19. Mubeen S, Zhang S, Kim N, et al. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 2012;12(4):2088–94.

    Article  CAS  PubMed  Google Scholar 

  20. Lim DK, Jeon KS, Hwang JH, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotech. 2011;6(7):452–60.

    Article  CAS  Google Scholar 

  21. Baumberg JJ, Aizpurua J, Mikkelsen MH, et al. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78.

    Article  CAS  PubMed  Google Scholar 

  22. Lee M, Lee S, Lee J, et al. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron. 2011;26(5):2135–41.

    Article  CAS  PubMed  Google Scholar 

  23. Yu Q, Trinh HD, Lee Y, et al. SERS-ELISA using silica-encapsulated Au core-satellite nanotags for sensitive detection of SARS-CoV-2. Sens Actuators B Chem. 2023;382:133521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Park SG, Ko J, et al. Sensitive and reproducible immunoassay of multiple mycotoxins using surface-enhanced Raman scattering mapping on 3D plasmonic nanopillar arrays. Small. 2018;14(39):1801623.

    Article  Google Scholar 

  25. Bastús NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27(17):11098–105.

    Article  PubMed  Google Scholar 

  26. Wang M, Zhang C, Yan S, et al. Wide-field super-resolved Raman imaging of carbon materials. ACS Photonics. 2021;8(6):1801–9.

    Article  CAS  Google Scholar 

  27. Davis BM, Hemphill AJ, Cebeci Maltaş D, et al. Multivariate hyperspectral Raman imaging using compressive detection. Anal Chem. 2011;83(13):5086–92.

    Article  CAS  PubMed  Google Scholar 

  28. Chen H, Park SG, Choi N, et al. SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens Bioelectron. 2020;167:112496.

    Article  CAS  PubMed  Google Scholar 

  29. Du Y, Li X, Niu Q, et al. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J Mol Cell Biol. 2020;12(8):630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Crowley ST, Duskey J, et al. Miniaturization of gene transfection assays in 384-and 1536-well microplates. Anal Biochem. 2015;470:14–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Chung-Ang University Young Scientist Scholarship (CAYSS) in 2021. The National Research Foundation of Korea also supported this work (grant numbers 2019R1A2C3004375 and 2020R1A5A1018052).

Author information

Authors and Affiliations

Authors

Contributions

Jiadong Chen: conceptualization, validation, formal analysis, investigation. Qian Yu: methodology, formal analysis. Mengdan Lu: validation, formal analysis, investigation. Chang Su Jeon: conceptualization, methodology, visualization. Sung Hyun Pyun: funding acquisition, methodology. Jaebum Choo: funding acquisition; conceptualization; methodology; writing—review and editing.

Corresponding authors

Correspondence to Sung Hyun Pyun or Jaebum Choo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Supplementary Information

ESM 1

(DOCX 6721 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yu, Q., Lu, M. et al. A strategy to enhance SERS detection sensitivity through the use of SiO2 beads in a 1536-well plate. Anal Bioanal Chem 415, 5939–5948 (2023). https://doi.org/10.1007/s00216-023-04896-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04896-0

Keywords

Navigation