Skip to main content
Log in

The role of comprehensive two-dimensional gas chromatography in mineral oil determination

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mineral oil hydrocarbons (MOH) contain a wide structural diversity of molecules, for which the reference method of analysis is the online coupled liquid chromatography-gas chromatography with flame ionization detection (LC-GC-FID). These compounds are very heterogeneous from a toxicological viewpoint, and an accurate risk assessment when dealing with a MOH contamination can only be performed if sufficient information is available on the types of structures present (i.e., number of carbons, degree of alkylation, number of aromatic rings). Unfortunately, the separation performances of the current LC-GC-FID method are insufficient for such characterization, not even mentioning the possible coelution of interfering compounds which additionally hinder MOH determination. Comprehensive two-dimensional gas chromatography (GC × GC), while mostly used for confirmation purposes in the past, starts to prove its relevance for overcoming the weaknesses of the LC-GC method and reaching even better the analytical requirements defined in the latest EFSA opinion. The present paper therefore aims at highlighting how GC × GC has contributed to the understanding of the MOH topic, how it has developed to meet the requirements of MOH determination, and how it could play a role in the field for overcoming many of the current analytical and toxicological challenges related to the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Biedermann M, Fiselier K, Grob K. Aromatic hydrocarbons of mineral oil origin in foods: method for determining the total concentration and first result. J Agric Food Chem. 2009;57:8711–21. https://doi.org/10.1021/jf901375e.

    Article  CAS  PubMed  Google Scholar 

  2. Hochegger A, Moret S, Geurts L, Gude T, Leitner E, Mertens B, O’Hagan S, Poças F, Simat TJ, Purcaro G. Mineral oil risk assessment: knowledge gaps and roadmap. Outcome of a multi-stakeholders workshop. Trends Food Sci Technol. 2021;113:151–66. https://doi.org/10.1016/j.tifs.2021.03.021.

    Article  CAS  Google Scholar 

  3. Sdrigotti N, Collard M, Purcaro G. Evolution of hyphenated techniques for mineral oil analysis. J Sep Sci. 2021;44:464–82. https://doi.org/10.1002/jssc.202000901.

    Article  CAS  PubMed  Google Scholar 

  4. Grob K, Artho A, Biedermann M, Egli J. Food contamination by hydrocarbons from lubricating oils and release agents: determination by coupled LC-GC. Food Addit Contam. 1991;8:437–46.

    Article  CAS  PubMed  Google Scholar 

  5. Biedermann M, Grob K, Meier W. Partially concurrent eluent evaporation with an early vapor exit; detection of food irradiation through coupled LC-GC analysis of fat. J high Resolut Chromatogr. 1989;12:591–8.

    Article  CAS  Google Scholar 

  6. Grob K. Could the Ukrainian sunflower oil contaminated with mineral oil wake up sleeping dogs? Eur J Lipid Sci Technol. 2008;110:979–81. https://doi.org/10.1002/ejlt.200800234.

    Article  CAS  Google Scholar 

  7. Biedermann M, Grob K. Is recycled newspaper suitable for food contact materials? Technical grade mineral oils from printing inks. Eur Food Res Technol. 2010;230:785–96. https://doi.org/10.1007/s00217-010-1223-9.

    Article  CAS  Google Scholar 

  8. European Food Safety Authorithy (EFSA). Scientific opinion on mineral oil hydrocarbons in food. 2012.

  9. Commission of the European Union. Commission Recommendation (EU) 2017/84 of 16 January 2017 on the monitoring of mineral oil hydrocarbons in food and in materials and articles intended to come into contact with food. Off J Eur Union. 2017;L12:95–6. https://doi.org/10.2903/j.efsa.2012.2704.L.

    Article  Google Scholar 

  10. Bratinova S, Hoekstra E. Joint Research Center (JRC). Guidance on sampling, analysis and data reporting for the monitoring of mineral oil hydrocarbons in food and food contact materials. In the frame of Commission Recommendation (EU) 2017/84. 2019.

  11. Koster S, Varela J, Stadler RH, Moulin J, Cruz-Hernandez C, Hielscher J, Lesueur C, Roïz J, Simian H. Mineral oil hydrocarbons in foods: is the data reliable? Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2020;37:69–83. https://doi.org/10.1080/19440049.2019.1678770.

    Article  CAS  PubMed  Google Scholar 

  12. Bratinova S, Hoekstra E, Emons H, Hutzler C, Kappenstein O, Biedermann M, McCombie G. The reliability of MOSH/MOAH data: a comment on a recently published article. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit. 2020;15(3):285–7. https://doi.org/10.1007/S00003-020-01287-W/METRICS.

    Article  CAS  Google Scholar 

  13. Foodwatch (2019) International test of various canned baby milk products for their content of mineral oil hydrocarbons (MOSH/MOAH). https://www.foodwatch.org/fileadmin/-INT/mineral_oil/documents/2019-10-24_Projectreport_babymilk_FINAL.pdf.

  14. Arcella D, Baert K, Binaglia M (2019) Rapid risk assessment on the possible risk for public health due to the contamination of infant formula and follow‐on formula by mineral oil aromatic hydrocarbons (MOAH). EFSA Supporting Publications. 16(11). https://doi.org/10.2903/SP.EFSA.2019.EN-1741

  15. European Commission, Joint Research Centre, Goncalves C, Karasek L, Bratinova S et al. Determination of MOSH/MOAH in Shell SN500 mineral oil : JRC IF 2021-03 : the third interlaboratory comparison. Publications Office of the European Union. 2022. https://data.europa.eu/doi/10.2760/23771

  16. Bratinova S, Robouch P, Beldi G, Senaldi C, Goncalves C, Karasek L, Valzacchi S, Conneely P, Hoekstra E, Emons H. Determination of MOAH in Infant Formula, JRC IF 2020-02 - The 2nd interlaboratory comparison, European Commission, Geel, JRC 125669 EN. (2021).

  17. European standards. CSN EN 16995 - Foodstuffs - Vegetable oils and foodstuff on basis of vegetable oils - Determination of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) with on-line HPLC-GC-FID analysis. 2017.

  18. Biedermann M, Grob K. On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 1: Method of analysis. J Chromatogr A. 2012;1255:56–75. https://doi.org/10.1016/j.chroma.2012.05.095.

    Article  CAS  PubMed  Google Scholar 

  19. Pirow R, Blume A, Hellwig N, Herzler M, Huhse B, Hutzler C, Pfaff K, Thierse HJ, Tralau T, Vieth B, Luch A. Mineral oil in food, cosmetic products, and in products regulated by other legislations. Crit Rev Toxicol. 2019;49:742–89. https://doi.org/10.1080/10408444.2019.1694862.

    Article  CAS  PubMed  Google Scholar 

  20. Tarnow P, Hutzler C, Grabiger S, Schön K, Tralau T, Luch A. Estrogenic activity of mineral oil aromatic hydrocarbons used in printing inks. PLoS ONE. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0147239.

    Article  CAS  Google Scholar 

  21. Carrillo J-C, Kamelia L, Romanuka J, Kral O, Isola A, Niemelä H, Steneholm A. Comparison of PAC and MOAH for understanding the carcinogenic and developmental toxicity potential of mineral oils. Regul Toxicol Pharmacol. 2022;132:105193. https://doi.org/10.1016/j.yrtph.2022.105193.

    Article  CAS  PubMed  Google Scholar 

  22. Kamelia L, de Haan L, Ketelslegers HB, Rietjens IMCM, Boogaard PJ. In vitro prenatal developmental toxicity induced by some petroleum substances is mediated by their 3- to 7-ring PAH constituent with a potential role for the aryl hydrocarbon receptor (AhR). Toxicol Lett. 2019;315:64–76. https://doi.org/10.1016/j.toxlet.2019.08.001.

    Article  CAS  PubMed  Google Scholar 

  23. Kamelia L, Louisse J, de Haan L, Rietjens IMCM, Boogaard PJ. Prenatal developmental toxicity testing of petroleum substances: application of the mouse embryonic stem cell test (EST) to compare in vitro potencies with potencies observed in vivo. Toxicol Vitr. 2017;44:303–12. https://doi.org/10.1016/j.tiv.2017.07.018.

    Article  CAS  Google Scholar 

  24. Hochegger A, Wagenhofer R, Savić S, Mayrhofer E, Washüttl M, Leitner E. Combination of multidimensional instrumental analysis and the Ames Test for the toxicological evaluation of mineral oil aromatic hydrocarbons. J Agric Food Chem. 2022;2022:16401–9. https://doi.org/10.1021/ACS.JAFC.2C05970/ASSET/IMAGES/LARGE/JF2C05970_0007.JPEG.

    Article  Google Scholar 

  25. Koch M, Becker E, Päch M, Kühn S, Kirchhoff E. Separation of the mineral oil aromatic hydrocarbons of three and more aromatic rings from those of one or two aromatic rings. J Sep Sci. 2020;43:1089–99. https://doi.org/10.1002/jssc.201900833.

    Article  CAS  PubMed  Google Scholar 

  26. Carrillo JC, Shen H, Momin F, Kral O, Schnieder H, Kühn S. GTL synthetic paraffin oil shows low liver and tissue retention compared to mineral oil. Food Chem Toxicol. 2022;159:112701. https://doi.org/10.1016/j.fct.2021.112701.

    Article  CAS  PubMed  Google Scholar 

  27. Isola AL, Carrillo JC, Lemaire P, Niemelä H, Steneholm A. Lack of human-relevant adversity of MOSH retained in tissues: Analysis of adversity and implications for regulatory assessment. Regulatory Toxicology and Pharmacology. 137:105284. https://doi.org/10.1016/j.yrtph.2022.105284.

  28. Barp L, Kornauth C, Wuerger T, Rudas M, Biedermann M, Reiner A, Concin N, Grob K. Mineral oil in human tissues, Part I: Concentrations and molecular mass distributions. Food Chem Toxicol. 2014;72:312–21. https://doi.org/10.1016/j.fct.2014.04.029.

    Article  CAS  PubMed  Google Scholar 

  29. Biedermann M, Barp L, Kornauth C, Würger T, Rudas M, Reiner A, Concin N, Grob K. Mineral oil in human tissues, Part II: Characterization of the accumulated hydrocarbons by comprehensive two-dimensional gas chromatography. Sci Total Environ. 2015;506–507:644–55. https://doi.org/10.1016/j.scitotenv.2014.07.038.

    Article  CAS  PubMed  Google Scholar 

  30. Barp L, Biedermann M, Grob K, Blas-Y-Estrada F, Nygaard UC, Alexander J, Cravedi JP. Mineral oil saturated hydrocarbons (MOSH) in female Fischer 344 rats; accumulation of wax components; implications for risk assessment. Sci Total Environ. 2017;583:319–33. https://doi.org/10.1016/j.scitotenv.2017.01.071.

    Article  CAS  PubMed  Google Scholar 

  31. Barp L, Biedermann M, Grob K, Blas-Y-Estrada F, Nygaard UC, Alexander J, Cravedi JP. Accumulation of mineral oil saturated hydrocarbons (MOSH) in female Fischer 344 rats: comparison with human data and consequences for risk assessment. Sci Total Environ. 2017;575:1263–78. https://doi.org/10.1016/j.scitotenv.2016.09.203.

    Article  CAS  PubMed  Google Scholar 

  32. Biedermann M, Grob K. On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: Migration from paperboard into dry foods: interpretation of chromatograms. J Chromatogr A. 2012;1255:76–99. https://doi.org/10.1016/j.chroma.2012.05.096.

    Article  CAS  PubMed  Google Scholar 

  33. Weber S, Schrag K, Mildau G, Kuballa T, Walch SG, Lachenmeier DW (2018) Analytical methods for the determination of mineral oil saturated hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH)—A Short Review. Analytical Chemistry Insights. 2018;13. https://doi.org/10.1177/1177390118777757.

  34. Purcaro G, Barp L, Moret S. Determination of hydrocarbon contamination in foods. RevAnal Methods. 2016;8:5755–72. https://doi.org/10.1039/c6ay00655h.

    Article  CAS  Google Scholar 

  35. Polyakova A, van Leeuwen S, Peters R. Review on chromatographic and specific detection methodologies for unravelling the complexity of MOAH in foods. Anal Chim Acta. 2022;1234:340098. https://doi.org/10.1016/j.aca.2022.340098.

    Article  CAS  PubMed  Google Scholar 

  36. Moret S, Barp L, Grob K, Conte LS. Optimised off-line SPE-GC-FID method for the determination of mineral oil saturated hydrocarbons (MOSH) in vegetable oils. Food Chem. 2011;129:1898–903. https://doi.org/10.1016/j.foodchem.2011.05.140.

    Article  CAS  Google Scholar 

  37. Fiselier K, Grundböck F, Schön K, Kappenstein O, Pfaff K, Hutzler C, Luch A, Grob K. Development of a manual method for the determination of mineral oil in foods and paperboard. J Chromatogr A. 2013;1271:192–200. https://doi.org/10.1016/j.chroma.2012.11.034.

    Article  CAS  PubMed  Google Scholar 

  38. Moret S, Grob K, Conte LS. On-line high-performance liquid chromatography-solvent evaporation-high-performance liquid chromatography-capillary gas chromatography-flame ionisation detection for the analysis of mineral oil polyaromatic hydrocarbons in fatty foods. J Chromatogr A. 1996;750:361–8. https://doi.org/10.1016/0021-9673(96)00453-0.

    Article  CAS  PubMed  Google Scholar 

  39. Moret S, Scolaro M, Barp L, Purcaro G, Conte LS. Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)-gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs. Food Chem. 2016;196:50–7. https://doi.org/10.1016/j.foodchem.2015.09.032.

    Article  CAS  PubMed  Google Scholar 

  40. Moret S, Conchione C, Srbinovska A, Lucci P. Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods. 2019;8(10):503. https://doi.org/10.3390/foods8100503.

  41. Srbinovska A, Gasparotto L, Conchione C, MenegozUrsol L, Lambertini F, Suman M, Moret S. Mineral oil contamination in basil pesto from the Italian market: Ingredient contribution and market survey. J Food Compos Anal. 2023;115:10491. https://doi.org/10.1016/j.jfca.2022.104914.

    Article  CAS  Google Scholar 

  42. MenegozUrsol L, Conchione C, Peroni D, Carretta A, Moret S. A study on the impact of harvesting operations on the mineral oil contamination of olive oils. Food Chem. 2023;406:135032. https://doi.org/10.1016/j.foodchem.2022.135032.

    Article  CAS  Google Scholar 

  43. Srbinovska A, Conchione C, Celaj F, MenegozUrsol L, Moret S. High sensitivity determination of mineral oils and olefin oligomers in cocoa powder and related packaging: Method validation and market survey. Food Chem. 2022;396:133686. https://doi.org/10.1016/j.foodchem.2022.133686.

    Article  CAS  Google Scholar 

  44. MenegozUrsol L, Conchione C, Srbinovska A, Moret S. Optimization and validation of microwave assisted saponification (MAS) followed by epoxidation for high-sensitivity determination of mineral oil aromatic hydrocarbons (MOAH) in extra virgin olive oil. Food Chem. 2022;370:130966. https://doi.org/10.1016/j.foodchem.2021.130966.

    Article  CAS  Google Scholar 

  45. Fiselier K, Fiorini D, Grob K. Activated aluminum oxide selectively retaining long chain n-alkanes. Part I, description of the retention properties. Anal Chim Acta. 2009;634:96–101. https://doi.org/10.1016/j.aca.2008.12.007.

    Article  CAS  PubMed  Google Scholar 

  46. Biedermann M, Munoz C, Grob K. Epoxidation for the analysis of the mineral oil aromatic hydrocarbons in food. An update J Chromatogr A. 2020;1624:461236. https://doi.org/10.1016/j.chroma.2020.461236.

    Article  CAS  PubMed  Google Scholar 

  47. Nestola M, Schmidt TC. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography–gas chromatography–flame ionization detection – evaluation of automated removal strategies for biogenic olefins. J Chromatogr A. 2017;1505:69–76. https://doi.org/10.1016/j.chroma.2017.05.035.

    Article  CAS  PubMed  Google Scholar 

  48. Wagner C, Neukom HP, Galetti V, Grob K. Determination of mineral paraffins in feeds and foodstuffs by bromination and preseparation on aluminium oxide: method and results of a ring test. Mitt Leb Hyg. 2001;92:231–49.

    CAS  Google Scholar 

  49. Nestola M. Automated workflow utilizing saponification and improved epoxidation for the sensitive determination of mineral oil saturated and aromatic hydrocarbons in edible oils and fats. J Chromatogr A. 2022;1682:463523. https://doi.org/10.1016/j.chroma.2022.463523.

    Article  CAS  PubMed  Google Scholar 

  50. Biedermann M, Munoz C, Grob K. Update of on-line coupled liquid chromatography – gas chromatography for the analysis of mineral oil hydrocarbons in foods and cosmetics. J Chromatogr A. 2017;1521:140–9. https://doi.org/10.1016/j.chroma.2017.09.028.

    Article  CAS  PubMed  Google Scholar 

  51. Purcaro G, Moret S, Conte L. Sample pre-fractionation of environmental and food samples using LC-GC multidimensional techniques. TrAC - Trends Anal Chem. 2013;43:146–60. https://doi.org/10.1016/j.trac.2012.10.007.

    Article  CAS  Google Scholar 

  52. Purcaro G, Moret S, Conte L. Hyphenated liquid chromatography-gas chromatography technique: recent evolution and applications. J Chromatogr A. 2012;1255:100–11. https://doi.org/10.1016/j.chroma.2012.02.018.

    Article  CAS  PubMed  Google Scholar 

  53. Lui Z, Phillips JB. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci. 1991;29:227–31.

    Article  Google Scholar 

  54. Tranchida PQ, Purcaro G, Maimone M, Mondello L. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis. J Sep Sci. 2016;39:149–61. https://doi.org/10.1002/jssc.201500379.

    Article  CAS  PubMed  Google Scholar 

  55. Tranchida PQ, Purcaro G, Dugo P, Mondello L, Purcaro G. Modulators for comprehensive two-dimensional gas chromatography. TrAC - Trends Anal Chem. 2011;30:1437–61. https://doi.org/10.1016/j.trac.2011.06.010.

    Article  CAS  Google Scholar 

  56. Vendeuvre C, Ruiz-Guerrero R, Bertoncini F, Duval L, Thiébaut D. Comprehensive two-dimensional gas chromatography for detailed characterisation of petroleum products. Oil Gas Sci Technol. 2007;62:43–55. https://doi.org/10.2516/ogst:2007004.

    Article  CAS  Google Scholar 

  57. Biedermann M, Grob K. Comprehensive two-dimensional GC after HPLC preseparation for the characterization of aromatic hydrocarbons of mineral oil origin in contaminated sunflower oil. J Sep Sci. 2009;32:3726–37. https://doi.org/10.1002/jssc.200900366.

    Article  CAS  PubMed  Google Scholar 

  58. Bauwens G, Pantó S, Purcaro G. Mineral oil saturated and aromatic hydrocarbons quantification: mono- and two-dimensional approaches. J Chromatogr A. 2021;1643:462044. https://doi.org/10.1016/j.chroma.2021.462044.

    Article  CAS  PubMed  Google Scholar 

  59. Spack LW, Leszczyk G, Varela J, Simian H, Gude T, Stadler RH. Understanding the contamination of food with mineral oil: the need for a confirmatory analytical and procedural approach. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2017;34:1052–71. https://doi.org/10.1080/19440049.2017.1306655.

    Article  CAS  PubMed  Google Scholar 

  60. Biedermann M, McCombie G, Grob K, Kappenstein O, Hutzler C, Pfaff K, Luch A. FID or MS for mineral oil analysis? J fur Verbraucherschutz und Leb. 2017;12:363–5. https://doi.org/10.1007/s00003-017-1127-8.

    Article  Google Scholar 

  61. Biedermann M, Grob K. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons. J Chromatogr A. 2015;1375:146–53. https://doi.org/10.1016/j.chroma.2014.11.064.

    Article  CAS  PubMed  Google Scholar 

  62. Bauwens G, Conchione C, Sdrigotti N, Moret S, Purcaro G. Quantification and characterization of mineral oil in fish feed by liquid chromatography-gas chromatography-flame ionization detector and liquid chromatography-comprehensive multidimensional gas chromatography-time-of-flight mass spectrometer/flame ionization detector. J Chromatogr. 2022;A 1677:463208. https://doi.org/10.1016/j.chroma.2022.463208.

  63. Pantó S, Collard M, Purcaro G. Comprehensive gas chromatography coupled to simultaneous dual detection (ToFMS/FID) as a confirmatory method for MOSH&MOAH determination in food. Current Trend in Mass Spectrometry. 2020;18(3):15–20.

  64. Lommatzsch M, Biedermann M, Simat TJ, Grob K. Argentation high performance liquid chromatography on-line coupled to gas chromatography for the analysis of monounsaturated polyolefin oligomers in packaging materials and foods. J Chromatogr A. 2015;1402:94–101. https://doi.org/10.1016/j.chroma.2015.05.019.

    Article  CAS  PubMed  Google Scholar 

  65. McCombie G, Hötzer K, Daniel J, Biedermann M, Eicher A, Grob K. Compliance work for polyolefins in food contact: results of an official control campaign. Food Control. 2016;59:793–800. https://doi.org/10.1016/j.foodcont.2015.06.058.

    Article  CAS  Google Scholar 

  66. Lommatzsch M, Biedermann M, Grob K, Simat TJ. Analysis of saturated and aromatic hydrocarbons migrating from a polyolefin-based hot-melt adhesive into food. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2016;33:473–88. https://doi.org/10.1080/19440049.2015.1130863.

    Article  CAS  PubMed  Google Scholar 

  67. Purcaro G, Tranchida PQ, Barp L, Moret S, Conte LS, Mondello L. Detailed elucidation of hydrocarbon contamination in food products by using solid-phase extraction and comprehensive gas chromatography with dual detection. Anal Chim Acta. 2013;773:97–104. https://doi.org/10.1016/j.aca.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  68. Zoccali M, Tranchida PQ, Mondello L. On-line liquid chromatography-comprehensive two dimensional gas chromatography with dual detection for the analysis of mineral oil and synthetic hydrocarbons in cosmetic lip care products. Anal Chim Acta. 2019;1048:221–6. https://doi.org/10.1016/j.aca.2018.10.069.

    Article  CAS  PubMed  Google Scholar 

  69. Biedermann M, Eicher A, Altherr T, McCombie G. Quantification of mineral oil aromatic hydrocarbons by number of aromatic rings via comprehensive two-dimensional gas chromatography: first results in food. J Chromatogr Open. 2022;2:100072. https://doi.org/10.1016/J.JCOA.2022.100072.

    Article  Google Scholar 

  70. Bieri S, Marriott PJ. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography. Anal Chem. 2008;80:760–8. https://doi.org/10.1021/ac071367q.

    Article  CAS  PubMed  Google Scholar 

  71. Bauwens G, Barp L, Purcaro G. Validation of the liquid chromatography-comprehensive multidimensional gas chromatography-time-of-flight mass spectrometer / flame ionization detector platform for mineral oil analysis exploiting interlaboratory comparison data. Green Anal Chem. 2023;4:100047. https://doi.org/10.1016/j.greeac.2022.100047.

    Article  Google Scholar 

  72. Bauwens G, Cavaco Soares A, Lacoste F, Ribera D, Blomsma C, Berg I, Campos F, Coenradie A, Creanga A, Zwagerman R, Purcaro G. Investigation of the effect of refining on the presence of targeted mineral oil aromatic hydrocarbons in coconut oil. Food Addit Contam - Part A. 2023;0:1–12. https://doi.org/10.1080/19440049.2022.2164621.

    Article  CAS  Google Scholar 

  73. Albert C, Humpf HU, Brühl L. Determining MOSH and MOAH with high sensitivity in vegetable oil a new, reliable, and comparable approach using online LC-GC-FID evaluation of method precision data. J Agric Food Chem. 2022. https://doi.org/10.1021/acs.jafc.2c01189.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Fonds de la Recherche Scientifique Belgique (FNRS) (PDR projects-ToxAnaMOH, T.0187.23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Purcaro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Recent Trends in (Bio)Analytical Chemistry with guest editors Antje J. Baeumner and Günter Gauglitz.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauwens, G., Gorska, A. & Purcaro, G. The role of comprehensive two-dimensional gas chromatography in mineral oil determination. Anal Bioanal Chem 415, 5067–5082 (2023). https://doi.org/10.1007/s00216-023-04718-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04718-3

Keywords

Navigation