Skip to main content
Log in

Validation of an isotope dilution mass spectrometry (IDMS) measurement procedure for the reliable quantification of steroid hormones in waters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reliable data are compulsory to efficiently monitor pollutants in aquatic environments, particularly steroid hormones that can exert harmful effects at challenging analytical levels below the ng L−1. An isotope dilution two-step solid-phase extraction followed by an ultra-performance liquid chromatography separation coupled to tandem mass spectrometry (UPLC-MS/MS) detection method was validated for the quantification of 21 steroid hormones (androgens, estrogens, glucocorticoids, and progestogens) in whole waters. To achieve a realistic and robust assessment of the performances of this method, the validation procedure was conducted using several water samples representative of its intended application. These samples were characterized in terms of concentration of ionic constituents, suspended particulate matter (SPM), and dissolved organic carbon contents (DOC). For estrogens that are part of the European Water Framework Directive Watchlist (17beta-estradiol and estrone), the performances met the European requirements (decision 2015/495/EU) in terms of limit of quantification (LQ) and measurement uncertainty. For 17alpha-ethinylestradiol, the challenging LQ of 0.035 ng L−1 was reached. More generally, for 15 compounds out of 21, the accuracy, evaluated in intermediate precision conditions at concentrations ranging between 0.1 and 10 ng L−1, was found to be within a 35% tolerance. The evaluation of the measurement uncertainty was realized following the Guide to the expression of Uncertainty in Measurement. Finally, a water monitoring survey demonstrated the suitability of the method and pointed out the contamination of Belgium rivers by five estrogens (17alpha-ethinylestradiol, estriol, 17alpha-estradiol, 17beta-estradiol, and estrone) and three glucocorticoids (betamethasone, cortisol, and cortisone) which have been up to now poorly documented in European rivers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Wang Y, Zhou J. Endocrine disrupting chemicals in aquatic environments: a potential reason for organism extinction? Aquat Ecosyst Health Manag. 2013. https://doi.org/10.1080/14634988.2013.759073.

  2. World Health Organization, United Nations Environment Programme, Inter-Organization Programme for the Sound Management of Chemicals, Bergman, Åke, Heindel, Jerrold J. et al. State of the science of endocrine disrupting chemicals 2012 : summary for decision-makers. World Health Organization. 2013. https://apps.who.int/iris/handle/10665/78102. Accessed 28 Feb 2022.

  3. Ojoghoro JO, Scrimshaw MD, Sumpter JP. Steroid hormones in the aquatic environment. Sci Total Environ. 2021. https://doi.org/10.1016/j.scitotenv.2021.148306.

    Article  PubMed  Google Scholar 

  4. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW. Collapse of a fish population after exposure to a synthetic estrogen. PNAS. 2007. https://doi.org/10.1073/pnas.0609568104.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Runnalls TJ, Beresford N, Losty E, Scott AP, Sumpter JP. Several synthetic progestins with different potencies adversely affect reproduction of fish. Environ Sci Technol. 2013. https://doi.org/10.1021/es3048834.

    Article  PubMed  Google Scholar 

  6. McNeil PL, Nebot C, Sloman KA. Physiological and behavioral effects of exposure to environmentally relevant concentrations of prednisolone during Zebrafish (Danio rerio) embryogenesis. Environ Sci Technol. 2016. https://doi.org/10.1021/acs.est.6b00276.

    Article  PubMed  Google Scholar 

  7. EU. Commission implementing decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document number C(2020) 5205). 2020. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.257.01.0032.01.ENG&toc=OJ:L:2020:257:TOC. Accessed 26 Apr 2023

  8. Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater. 2018. https://doi.org/10.1016/j.jhazmat.2017.09.058.

    Article  PubMed  Google Scholar 

  9. Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: a five-year worldwide perspective. Environ Pollut. 2020. https://doi.org/10.1016/j.envpol.2020.115405.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lardy-Fontan S, Le Diouron V, Fallot C, Vaslin-Reimann S, Lalere B. Toward the determination of estrogenic compounds in the framework of EU watch list: validation and implementation of a two-step solid phase extraction–liquid phase chromatography coupled to tandem mass spectrometry method. Accred Qual Assur. 2018. https://doi.org/10.1007/s00769-018-1346-4.

    Article  Google Scholar 

  11. Weizel A, Schlüsener MP, Dierkes G, Ternes TA. Occurrence of glucocorticoids, mineralocorticoids, and progestogens in various treated wastewater, rivers, and streams. Environ Sci Technol. 2018. https://doi.org/10.1021/acs.est.7b06147.

    Article  PubMed  Google Scholar 

  12. Golovko O, Šauer P, Fedorova G, Kroupová HK, Grabic R. Determination of progestogens in surface and waste water using SPE extraction and LC-APCI/APPI-HRPS. Sci Total Environ. 2018. https://doi.org/10.1016/j.scitotenv.2017.10.120.

    Article  PubMed  Google Scholar 

  13. Goeury K, Vo Duy S, Munoz G, Prévost M, Sauvé S. Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry. J Chromatogr A. 2019. https://doi.org/10.1016/j.chroma.2019.01.016.

    Article  PubMed  Google Scholar 

  14. Zhang K, Zhao Y, Fent K. Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17α-hydroxypregnanolone and pregnanediol in swiss wastewater and surface water. Environ Sci Technol. 2017. https://doi.org/10.1021/acs.est.7b01231.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huysman S, Van Meulebroek L, Vanryckeghem F, Van Langenhove H, Demeestere K, Vanhaecke L. Development and validation of an ultra-high performance liquid chromatographic high resolution Q-Orbitrap mass spectrometric method for the simultaneous determination of steroidal endocrine disrupting compounds in aquatic matrices. Anal Chim Acta. 2017. https://doi.org/10.1016/j.aca.2017.07.001.

    Article  PubMed  Google Scholar 

  16. Zhang K, Fent K. Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Sci Total Environ. 2018. https://doi.org/10.1016/j.scitotenv.2017.08.114.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kase R, Javurkova B, Simon E, Swart K, Buchinger S, Könemann S, Escher BI, Carere M, Dulio V, Ait-Aissa S, Hollert H, Valsecchi S, Polesello S, Behnisch P, di Paolo C, Olbrich D, Sychrova E, Gundlach M, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tusil P, Soldan P, von Danwitz B, Schwaiger J, Palao AM, Bersani F, Perceval O, Kienle C, Vermeirssen E, Hilscherova K, Reifferscheid G, Werner I. Screening and risk management solutions for steroidal estrogens in surface and wastewater. Trends Anal Chem. 2018;102:343–58. https://doi.org/10.1016/j.trac.2018.02.013.

    Article  CAS  Google Scholar 

  18. Könemann S, Kase R, Simon E, Swart K, Buchinger S, Schlüsener M, Hollert H, Escher BI, Werner I, Aït-Aïssa S, Vermeirssen E, Dulio V, Valsecchi S, Polesello S, Behnisch P, Javurkova B, Perceval O, Di Paolo C, Olbrich D, Sychrova E, Schlichting R, Leborgne L, Clara M, Scheffknecht C, Marneffe Y, Chalon C, Tušil P, Soldàn P, von Danwitz B, Schwaiger J, San Martín Becares MI, Bersani F, Hilscherová K, Reifferscheid G, Ternes T, Carere M. Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. Trends Analyt Chem. 2018. https://doi.org/10.1016/j.trac.2018.02.008.

  19. Lai KM, Johnson KL, Scrimshaw MD, Lester JN. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol. 2000. https://doi.org/10.1021/es9912729.

    Article  Google Scholar 

  20. Martínez-Hernández V, Meffe R, Herrera S, Arranz E, de Bustamante I. Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci Total Environ. 2014. https://doi.org/10.1016/j.scitotenv.2013.11.036.

    Article  PubMed  Google Scholar 

  21. EU. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. 2000. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32000L0060. Accessed 26 Apr 2023

  22. Glineur A, Barbera B, Nott K, Carbonnelle P, Ronkart S, Lognay G, Tyteca E. Trace analysis of estrogenic compounds in surface and groundwater by ultra high performance liquid chromatography-tandem mass spectrometry as pyridine-3-sulfonyl derivatives. J Chromatogr A. 2018. https://doi.org/10.1016/j.chroma.2017.12.042.

    Article  PubMed  Google Scholar 

  23. Ten KA. years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007. https://doi.org/10.1289/ehp.9357.

    Article  Google Scholar 

  24. Mirmont E, Bœuf A, Charmel M, Lalère B, Laprévote O, Lardy-Fontan S. Overcoming matrix effects in quantitative liquid chromatography–mass spectrometry analysis of steroid hormones in surface waters. Rapid Commun Mass Spectrom. 2022. https://doi.org/10.1002/rcm.9154.

    Article  PubMed  Google Scholar 

  25. AFNOR. XP CEN/TS 16800. In: Afnor EDITIONS. 2021. https://www.boutique.afnor.org/fr-fr/norme/xp-cen-ts-16800/lignes-directrices-pour-la-validation-des-methodes-danalyse-physicochimique/fa201876/238965. Accessed 12 May 2022.

  26. AFNOR. NF T90-210. In: Afnor EDITIONS. 2018. https://www.boutique.afnor.org/fr-fr/norme/nf-t90210/qualite-de-leau-protocole-devaluation-initiale-des-performances-dune-method/fa190833/81632. Accessed 12 May 2022.

  27. JCGM. Guides to the expression of uncertainty in measurement. 2020. https://www.iso.org/sites/JCGM/GUM-introduction.htm. Accessed 28 Feb 2022.

  28. Elordui-Zapatarietxe S, Fettig I, Philipp R, Gantois F, Lalère B, Swart C, Petrov P, Goenaga-Infante H, Vanermen G, Boom G, Emteborg H. Novel concepts for preparation of reference materials as whole water samples for priority substances at nanogram-per-liter level using model suspended particulate matter and humic acids. Anal Bioanal Chem. 2015. https://doi.org/10.1007/s00216-014-8349-8.

    Article  PubMed  Google Scholar 

  29. Mirmont E, Bœuf A, Charmel M, Vaslin-Reimann S, Lalère B, Laprévote O, Lardy-Fontan S. Development and implementation of an analytical procedure for the quantification of natural and synthetic steroid hormones in whole surface waters. J Chromatogr B. 2021;1175:122732. https://doi.org/10.1016/j.jchromb.2021.122732.

  30. Database of higher-order reference materials, measurement methods/procedures and services. https://www.bipm.org/jctlm/news.do. Accessed 28 Feb 2022.

  31. Duxbury K, Owen L, Gillingwater S, Keevil B. Naturally occurring isotopes of an analyte can interfere with doubly deuterated internal standard measurement. Ann Clin Biochem. 2008. https://doi.org/10.1258/acb.2007.007137.

    Article  PubMed  Google Scholar 

  32. Davison AS, Milan AM, Dutton JJ. Potential problems with using deuterated internal standards for liquid chromatography-tandem mass spectrometry. Ann Clin Biochem. 2013. https://doi.org/10.1177/0004563213478938.

    Article  PubMed  Google Scholar 

  33. ISO. ISO 21253-1:2019. In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/02/70256.html. Accessed 28 Feb 2022.

  34. AFNOR. FD T90-230. In: Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/fd-t90230/qualite-de-leau-caracterisation-des-methodes-danalyses-guide-pour-la-select/fa182577/46180. Accessed 28 Feb 2022.

  35. JCGM. International vocabulary of metrology. 2012. https://www.iso.org/sites/JCGM/VIM-introduction.htm. Accessed 28 Feb 2022.

  36. EU, Scientific Opinion on “Draft Environmental Quality Standards for Priority Substances under the WFD”-17-Alpha-Ethinylestradiol (EE2), Beta-Estradiol (E2) and Estrone (E1). 2022. https://ec.europa.eu/health/publications/scientific-opinion-draft-environmental-quality-standards-priority-substances-under-wfd-17-alpha_en. Accessed 21 Jun 2022.

  37. Glineur A, Nott K, Carbonnelle P, Ronkart S, Purcaro G. Development and validation of a method for determining estrogenic compounds in surface water at the ultra-trace level required by the EU Water Framework Directive Watch List. J Chromatogr A. 2020. https://doi.org/10.1016/j.chroma.2020.461242.

    Article  PubMed  Google Scholar 

  38. Zhang J-N, Chen J, Yang L, Zhang M, Yao L, Liu Y-S, Zhao J-L, Zhang B, Ying G-G. Occurrence and fate of androgens, progestogens and glucocorticoids in two swine farms with integrated wastewater treatment systems. Water Res. 2021. https://doi.org/10.1016/j.watres.2021.116836.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shen X, Chang H, Sun D, Wang L, Wu F. Trace analysis of 61 natural and synthetic progestins in river water and sewage effluents by ultra-high performance liquid chromatography–tandem mass spectrometry. Water Res. 2018. https://doi.org/10.1016/j.watres.2018.01.030.

    Article  PubMed  Google Scholar 

  40. Shen X, Chang H, Sun Y, Wan Y. Determination and occurrence of natural and synthetic glucocorticoids in surface waters. Environ Int. 2020. https://doi.org/10.1016/j.envint.2019.105278.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leusch F, Neale P, Arnal C, Aneck-Hahn N, Balaguer P, Bruchet A, Escher B, Esperanza M, Grimaldi M, Leroy G, Scheurer M, Schlichting R, Schriks M, Hebert A. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Res. 2018. https://doi.org/10.1016/j.watres.2018.03.056.

    Article  PubMed  Google Scholar 

  42. Goeury K, Vo Duy S, Munoz G, Prévost M, Sauvé S. Assessment of automated off-line solid-phase extraction LC-MS/MS to monitor EPA priority endocrine disruptors in tap water, surface water, and wastewater. Talanta. 2022. https://doi.org/10.1016/j.talanta.2022.123216.

    Article  PubMed  Google Scholar 

  43. Tavazzi S, Mariani G, Comero S, Ricci M, Paracchini B, Skejo H, Gawlik B. Water Framework Directive Watch List Method Analytical method for determination of compounds selected for the first Surface Water Watch List. Publications Office of the European Union. 2016.

  44. EU. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. 2009. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0090. Accessed 26 Apr 2023

  45. ISO, ISO 11352:2012. In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/03/50399.html. Accessed 28 Feb 2022.

  46. Sousa JCG, Ribeiro AR, Barbosa MO, Ribeiro C, Tiritan ME, Pereira MFR, Silva AMT. Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Sci Total Environ. 2019. https://doi.org/10.1016/j.scitotenv.2018.08.309.

    Article  PubMed  Google Scholar 

  47. Merlo F, Speltini A, Maraschi F, Sturini M, Profumo A. HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica. Arab J Chem. 2020. https://doi.org/10.1016/j.arabjc.2019.10.009.

    Article  Google Scholar 

  48. Molnár S, Kulcsár G, Perjési P. Determination of steroid hormones in water samples by liquid chromatography electrospray ionization mass spectrometry using parallel reaction monitoring. Microchem J. 2022. https://doi.org/10.1016/j.microc.2021.107105.

    Article  Google Scholar 

  49. Petrovic M. Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples. Trends Environ Anal Chem. 2014. https://doi.org/10.1016/j.teac.2013.11.004.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Nathalie Guigues from LNE for her support during the writing of the present paper.

Funding

The ANRT (Association Nationale de la Recherche et de la Technologie) (2017/1131) funded Elodie Mirmont’ PhD work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Elodie Mirmont, Amandine Boeuf, Sophie Lardy-Fontan

Methodology: Elodie Mirmont, Amandine Boeuf, Sophie Lardy-Fontan

Investigation: Elodie Mirmont, Mélissa Charmel

Writing original draft: Elodie Mirmont, Amandine Boeuf, Sophie Lardy-Fontan

Writing review and editing: Elodie Mirmont, Amandine Boeuf, Mélissa Charmel, Béatrice Lalère, Sophie Lardy-Fontan

Visualization: Elodie Mirmont

Supervision: Amandine Boeuf, Sophie Lardy-Fontan

Project administration: Amandine Boeuf, Sophie Lardy-Fontan

Funding acquisition: Amandine Boeuf, Béatrice Lalère, Sophie Lardy-Fontan

Corresponding author

Correspondence to Amandine Bœuf.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirmont, E., Bœuf, A., Charmel, M. et al. Validation of an isotope dilution mass spectrometry (IDMS) measurement procedure for the reliable quantification of steroid hormones in waters. Anal Bioanal Chem 415, 3215–3229 (2023). https://doi.org/10.1007/s00216-023-04698-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04698-4

Keywords

Navigation