Skip to main content

Advertisement

Log in

A simple and sensitive electrochemical sensor for the detection of peptidase activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a simple and sensitive electrochemical sensor was proposed for the detection of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) activity. Firstly, the BACE1 specific peptide was modified onto the Au electrode to graft a single-strand DNA with polycytosine DNA sequence (dC12) via amide bonding between peptide and dC12. Because the dC12 is abundant in phosphate groups, thus it can react with molybdate to form redox molybdophosphate, which can generate electrochemical current. Using BACE1 as a model peptidase, the proposed sensor shows a linear response range from 1 to 15 U/mL and limit of detection down to 0.05 U/mL. The sensor displays good performance for the BACE1 activity detection in human serum samples, which may have potential applications in the clinical diagnostics of Alzheimer’s disease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun L, Cho HJ, Sen S, Arango AS, Huynh TT, Huang Y, et al. Amphiphilic distyrylbenzene derivatives as potential therapeutic and imaging agents for soluble and insoluble amyloid β aggregates in Alzheimer’s disease. J Am Chem Soc. 2021;143:10462–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu C, Li Y, Luo Y, Zhang Y, Zhou T, Deng J. Lab-on-a-ZnO-submicron-particle sensor array for monitoring AD upon Cd2+ exposure with CSF tau441% as an effective hallmark. Anal Chem. 2021;93:15005–14.

    Article  CAS  PubMed  Google Scholar 

  3. Qin J, Cho M, Lee Y. Ultrasensitive detection of amyloid-β using cellular prion protein on the highly conductive Au nanoparticles-poly(3,4-ethylene dioxythiophene)-poly(thiophene-3-acetic acid) composite electrode. Anal Chem. 2019;91:11259–65.

    Article  CAS  PubMed  Google Scholar 

  4. Ma F, Wang Q, Xu Q, Zhang CY. Self-assembly of superquenched gold nanoparticle nanosensors for lighting up BACE-1 in live cells. Anal Chem. 2021;93:15124–32.

    Article  CAS  PubMed  Google Scholar 

  5. Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: current status and future directions in treating Alzheimer’s disease. Med Res Rev. 2020;40:339–84.

    Article  PubMed  Google Scholar 

  6. Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, et al. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and rutin for synergistic therapy of Alzheimer’s disease. Small. 2022;18:e2107534.

    Article  PubMed  Google Scholar 

  7. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 2003;9:3–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ge L, Liu Z, Tian Y. A novel two-photon ratiometric fluorescent probe for imaging and sensing of BACE1 in different regions of AD mouse brain. Chem Sci. 2020;11:2215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin X, Yang L, Yan X, Wang Q. Screening platform based on inductively coupled plasma mass spectrometry for β-site amyloid protein cleaving enzyme 1 (BACE1) inhibitors. ACS Chem Neurosci. 2021;12:1093–9.

    Article  CAS  PubMed  Google Scholar 

  10. Yi X, Hao Y, Xia N, Wang J, Quintero M, Li D, et al. Sensitive and continuous screening of inhibitors of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem. 2013;85:3660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schejbal J, Slezackova L, Reminek R, Glatz Z. A capillary electrophoresis-mass spectrometry based method for the screening of β-secretase inhibitors as potential Alzheimer’s disease therapeutics. J Chromatogr A. 2017;1487:235–41.

    Article  CAS  PubMed  Google Scholar 

  12. Dey J, Roberts A, Mahari S, Gandhi S, Tripathi pp. Electrochemical detection of Alzheimer’s disease biomarker, β-secretase enzyme (BACE1), with one-step synthesized reduced graphene oxide. Front Bioeng Biotech. 2022;10:873811.

    Article  Google Scholar 

  13. Zuo X, Dai H, Zhang H, Liu J, Ma S, Chen X. A peptide-WS2 nanosheet based biosensing platform for determination of β-secretase and screening of its inhibitors. Analyst. 2018;143:4585–91.

    Article  CAS  PubMed  Google Scholar 

  14. Jing L, Xie C, Li Q, Yang M, Li S, Li H, et al. Electrochemical biosensors for the analysis of breast cancer biomarkers: from design to application. Anal Chem. 2022;94:269–96.

    Article  CAS  PubMed  Google Scholar 

  15. Kannan P, Subramanian P, Maiyalagan T, Jiang Z. Cobalt oxide porous nanocubes-based electrochemical immunobiosensing of hepatitis B virus DNA in blood serum and urine samples. Anal Chem. 2019;91:5824–33.

    Article  CAS  PubMed  Google Scholar 

  16. Qu F, Yang M, Rasooly A. Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-secretase. Anal Chem. 2016;88:10559–65.

    Article  CAS  PubMed  Google Scholar 

  17. Yang J, He J, Mi L, Han F, Wen W, Zhang X, et al. Magnetic rolling circle amplification-assisted single-particle collision immunosensor for ultrasensitive detection of cardiac troponin I. Anal Chem. 2022;94:12514–22.

    Article  CAS  PubMed  Google Scholar 

  18. Miao P, Wang B, Han K, Tang Y. Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochem Commun. 2014;47:21–4.

    Article  CAS  Google Scholar 

  19. Fapyane D, Ferapontova EE. Electrochemical assay for a total cellulase activity with improved sensitivity. Anal Chem. 2017;89:3959–65.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Wang X, Chen T, Feng C, Li G. Electrochemical analysis of enzyme based on the self-assembly of lipid bilayer on an electrode surface mediated by hydrazone chemistry. Anal Chem. 2017;89:13245–51.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Song X, Li L, Tang B. A high-fidelity electrochemical platform based on Au-Se interface for biological detection. Anal Chem. 2020;92:5855–61.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou C, Cui K, Liu Y, Hao S, Zhang L, Ge S, et al. Ultrasensitive microfluidic paper-based electrochemical/visual analytical device via signal amplification of Pd@hollow Zn/Co core-shell ZIF67/ZIF8 nanoparticles for prostate-specific antigen detection. Anal Chem. 2021;93:5459–67.

    Article  CAS  PubMed  Google Scholar 

  23. Gu S, Shi XM, Zhang D, Fan GC, Luo X. Peptide-based photocathodic biosensors: integrating a recognition peptide with an antifouling peptide. Anal Chem. 2021;93:2706–12.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Feng J, Tan Z, Wang H. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosens Bioelectron. 2014;60:218–23.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang D, Yang C, Fan Y, Polly Leung HM, Inthavong K, Zhang Y, et al Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO3•H2O@N-GQDs). Biosens Bioelectron 183:113214 2021.

  26. Li X, Shen C, Yang M, Rasooly A. Polycytosine DNA electric-current-generated immunosensor for electrochemical detection of human epidermal growth factor receptor 2 (HER2). Anal Chem. 2018;90:4764–9.

    Article  CAS  PubMed  Google Scholar 

  27. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A. Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem. 2017;89:10264–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A. DNA generated electric current biosensor. Anal Chem. 2017;89:2547–52.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Sun Y, Yang J, Hu Y, Yang R, Li Z, et al. High performance fluorescence biosensing of cysteine in human serum with superior specificity based on carbon dots and cobalt-derived recognition. Sens Actuators B Chem. 2019;280:62–8.

    Article  CAS  Google Scholar 

  30. Luo J, Rasooly A, Wang L, Zeng K, Shen C, Qian P, et al. Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters. Microchim Acta. 2016;183:605–10.

    Article  CAS  Google Scholar 

  31. Xia N, Peng P, Wang S, Du J, Zhu G, Du W, et al. A signal-on electrochemical strategy for protease detection based on the formation of ATCUN-Cu(II). Sens Actuators B Chem. 2016;232:557–63.

    Article  CAS  Google Scholar 

  32. Deng D, Hao Y, Yang P, Xia N, Yu W, Liu X, et al Single-labeled peptide substrates for detection of protease activity based on the inherent fluorescence quenching ability of Cu2+. Anal Methods.11:1248–53.

  33. Liu L, Deng D, Wang Y, Song K, Shang Z, Wang Q, et al. A colorimetric strategy for assay of protease activity based on gold nanoparticle growth controlled by ascorbic acid and Cu(II)-coordinated peptide. Sens Actuators B Chem. 2018;266:246–54.

    Article  CAS  Google Scholar 

  34. Liu L, Xia N, Yu J. A graphene oxide-based fluorescent scheme for the determination of the activity of the β-site amyloid precursor protein (BACE1) and its inhibitors. Microchim Acta. 2015;183:265–71.

    Article  Google Scholar 

Download references

Funding

The authors thank the support of this work by the Science and Technology Fund Project of Guizhou Provincial Health Commission (Grant no. gzwkj2022-207) and the Zunyi Science and Technology Plan Project (Zunshikehe HZ [2022] 383).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang, Zeli Yuan or Junjun Luo.

Ethics declarations

Ethics approval

All experiments were in keeping with the guidelines of the National Institute of Health, China, and approved by the Institutional Ethical Committee (IEC) of Zunyi Medical University.

Consent to participate

We also have received informed consent for all experimentation with human serum samples.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Qiu, M., Li, H. et al. A simple and sensitive electrochemical sensor for the detection of peptidase activity. Anal Bioanal Chem 415, 2209–2215 (2023). https://doi.org/10.1007/s00216-023-04628-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04628-4

Keywords

Navigation