Skip to main content

Advertisement

Log in

Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Low-dimensional (<10 nm) semiconductor carbon quantum dots (CQDs) have been widely used in metal ion sensing and bioimaging. Here, we used the renewable resource Curcuma zedoaria as a carbon source and prepared green carbon quantum dots with good water solubility by a hydrothermal method without any chemical reagent. At different pH values (4–6) and high NaCl concentrations, the photoluminescence of the CQDs was very stable, which indicated that they were suitable for a wide range of applications even under harsh conditions. The CQDs exhibited fluorescence quenching in the presence of Fe3+ ions, indicating their application potential as fluorescence probes for the sensitive and selective detection of Fe3+ ions. The CQDs showed high photostability, low cytotoxicity, and good hemolytic activity, and were successfully applied to bioimaging experiments, i.e. multicolor cell imaging in L-02 (human normal hepatocytes) and CHL (Chinese hamster lung) cells with and without Fe3+, as well as wash-free labeling imaging of Staphylococcus aureus and Escherichia coli. The CQDs also showed good free radical scavenging activity and demonstrated a protective effect against photooxidative damage to L-02 cells. These results indicate that CQDs obtained from medicinal herb sources have multiple potential applications in the fields of sensing, bioimaging, and even disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li H, Kang Z, Liu Y, Lee S-T. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230–53.

    Article  CAS  Google Scholar 

  2. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Chem Int Ed. 2010;49(38):6726–44.

    Article  CAS  Google Scholar 

  3. Zhu B, Sun S, Wang Y, Deng S, Qian G, Wang M, et al. Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C. 2013;1(3):580–6.

    Article  CAS  Google Scholar 

  4. Hola K, Bourlinos AB, Kozak O, Berka K, Siskova KM, Havrdova M, et al. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission. Carbon. 2014;70:279–86.

    Article  CAS  Google Scholar 

  5. Ruan S, Wan J, Fu Y, Han K, Li X, Chen J, et al. PEGylated fluorescent carbon nanoparticles for noninvasive heart imaging. Bioconjug Chem. 2014;25(6):1061–8.

    Article  CAS  PubMed  Google Scholar 

  6. Huang H, Lu Y-C, Wang A-J, Liu J-H, Chen J-R, Feng J-J. A facile, green, and solvent-free route to nitrogen–sulfur-codoped fluorescent carbon nanoparticles for cellular imaging. RSC Adv. 2014;4(23):11872–5.

    Article  CAS  Google Scholar 

  7. Hu M, Yang Y, Gu X, Hu Y, Huang J, Wang C. One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag+ detection. RSC Adv. 2014;4(107):62446–52.

    Article  CAS  Google Scholar 

  8. Geng X, Sun Y, Guo Y, Zhao Y, Zhang K, Xiao L, et al. Fluorescent carbon dots for in situ monitoring of lysosomal ATP levels. Anal Chem. 2020;92(11):7940–6.

    Article  CAS  PubMed  Google Scholar 

  9. Deng M, Wang S, Liang C, Shang H, Jiang S. A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe3+ in aqueous solution. RSC Adv. 2016;6(32):26936–40.

    Article  CAS  Google Scholar 

  10. Jonnalagadda M, Prasad VB, Raghu AV. Synthesis of composite nanopowder through Mn doped ZnS-CdS systems and its structural, optical properties. J Mol Struct. 2021;1230:129875.

    Article  CAS  Google Scholar 

  11. Hu Z, Jiao X-Y, Xu L. The N, S co-doped carbon dots with excellent luminescent properties from green tea leaf residue and its sensing of gefitinib. Microchem J. 2020;154:104588.

    Article  CAS  Google Scholar 

  12. Athinarayanan J, Periasamy VS, Alshatwi AA. Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Mater Sci Eng C. 2020;117:111313.

    Article  CAS  Google Scholar 

  13. Feng Y, Zhong D, Miao H, Yang X. Carbon dots derived from rose flowers for tetracycline sensing. Talanta. 2015;140:128–33.

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Wang D, Luo N, Feng M, Peng X, Liao X. Green synthesis of fluorescent N, S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochim Acta A Mol Biomol Spectrosc. 2020;239:118462.

    Article  CAS  PubMed  Google Scholar 

  15. Wang W, Chen J, Wang D, Shen Y, Yang L, Zhang T, et al. Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe 3+ ions in solutions and living cells. Anal Methods. 2021;13(6):789–95.

    Article  CAS  PubMed  Google Scholar 

  16. Li L-S, Xu L. Highly fluorescent N, S, P tri-doped carbon dots for Cl− detection and their assistance of TiO2 as the catalyst in the degradation of methylene blue. J Photochem Photobiol A Chem. 2020;401:112772.

    Article  CAS  Google Scholar 

  17. Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg (II) ions detection and cell imaging. Appl Surf Sci. 2016;390:38–42.

    Article  CAS  Google Scholar 

  18. Ang-Lee MK, Moss J, Yuan C-S. Herbal medicines and perioperative care. Jama. 2001;286(2):208–16.

    Article  CAS  PubMed  Google Scholar 

  19. Wei X, Li L, Liu J, Yu L, Li H, Cheng F, et al. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl Mater Interfaces. 2019;11(10):9832–40.

    Article  CAS  PubMed  Google Scholar 

  20. Tejwan N, Kundu M, Ghosh N, Chatterjee S, Sharma A, Singh TA, et al. Synthesis of green carbon dots as bioimaging agent and drug delivery system for enhanced antioxidant and antibacterial efficacy. Inorg Chem Commun. 2022;139:109317.

    Article  CAS  Google Scholar 

  21. Liu H, Bai Y, Zhou Y, Feng C, Liu L, Fang L, et al. Blue and cyan fluorescent carbon dots: one-pot synthesis, selective cell imaging and their antiviral activity. RSC Adv. 2017;7(45):28016–23.

    Article  CAS  Google Scholar 

  22. Awaad AS, El-Meligy R, Qenawy S, Atta A, Soliman GA. Anti-inflammatory, antinociceptive and antipyretic effects of some desert plants. J Saudi Chemical Soc. 2011;15(4):367–73.

    Article  Google Scholar 

  23. Rates SMK. Plants as source of drugs. Toxicon. 2001;39(5):603–13.

    Article  CAS  PubMed  Google Scholar 

  24. Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140(12):4260–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tejwan N, Sharma A, Thakur S, Das J. Green synthesis of a novel carbon dots from red Korean ginseng and its application for Fe2+ sensing and preparation of nanocatalyst. Inorg Chem Commun. 2021;134:108985.

    Article  CAS  Google Scholar 

  26. Sun C, Zhang Y, Wang P, Yang Y, Wang Y, Xu J, et al. Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+. Nanoscale Res Lett 2016;11(1):1-9.

  27. Lee SU, Belosludov RV, Mizuseki H, Kawazoe Y. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes. Small (Weinheim an der Bergstrasse, Germany). 2009;5(15):1769–75.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou J, Shan X, Ma J, Gu Y, Qian Z, Chen J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Adv. 2014;4(11):5465–8.

    Article  CAS  Google Scholar 

  29. Han H, Wang L, Liu Y, Shi X, Zhang X, Li M, et al. Combination of curcuma zedoary and kelp inhibits growth and metastasis of liver cancer in vivo and in vitro via reducing endogenous H2S levels. Food Funct. 2019;10(1):224–34.

    Article  CAS  PubMed  Google Scholar 

  30. Loc NH, Duc DT, Kwon TH, Yang MS. Micropropagation of zedoary (Curcuma zedoaria Roscoe)–a valuable medicinal plant. Plant Cell Tissue Organ Cult. 2005;81(1):119–22.

    Article  CAS  Google Scholar 

  31. Korah BK, Punnoose MS, Thara CR, Abraham T, Ambady K, Mathew B. Curcuma amada derived nitrogen-doped carbon dots as a dual sensor for tetracycline and mercury ions. Diam Relat Mater. 2022;125:108980.

    Article  CAS  Google Scholar 

  32. Venugopalan P, Vidya N. Green synthesis of mango ginger (Curcuma amada) derived fluorescent carbon dots—a potent label-free probe for hexavalent chromium sensing in water. Spectroscopy Letters. 2022:1-16.

  33. Korah BK, Chacko AR, Mathew S, John BK, Abraham T, Mathew B. Biomass-derived carbon dots as a sensitive and selective dual detection platform for fluoroquinolones and tetracyclines. Anal Bioanal Chem. 2022:1-17.

  34. Shiobara Y, Asakawa Y, Kodama M, Yasuda K, Takemoto T. Curcumenone, curcumanolide A and curcumanolide B, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry. 1985;24(11):2629–33.

    Article  CAS  Google Scholar 

  35. Tariq S, Imran M, Mushtaq Z, Asghar N. Phytopreventive antihypercholesterolmic and antilipidemic perspectives of zedoary (Curcuma Zedoaria Roscoe.) herbal tea. Lipids Health Dis. 2016;15(1):1–10.

    Article  Google Scholar 

  36. Maxwell SR. Prospects for the use of antioxidant therapies. Drugs. 1995;49(3):345–61.

    Article  CAS  PubMed  Google Scholar 

  37. Kanthi Gudimella K, Gedda G, Kumar PS, Babu B, Yamajala B, Rao BV, et al. Novel synthesis of fluorescent carbon dots from bio-based Carica Papaya Leaves: Optical and structural properties with antioxidant and anti-inflammatory activities. Environ Res. 2022;204:111854.

    Article  Google Scholar 

  38. Smrithi S, Kottam N, Muktha H, Mahule AM, Chamarti K, Vismaya V, et al. Carbon dots derived from Beta vulgaris: evaluation of its potential as antioxidant and anticancer agent. Nanotechnology. 2021;33(4):045403.

    Article  Google Scholar 

  39. Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 1995;28(1):25–30.

    Article  CAS  Google Scholar 

  40. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods. 2018;40:68–75.

    Article  CAS  Google Scholar 

  41. Su Y, Li L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr Polym. 2020;229:115407.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou S, Huang G, Chen G. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chem. 2021;361:130089.

    Article  CAS  PubMed  Google Scholar 

  43. Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B. 2015;214:29–35.

    Article  CAS  Google Scholar 

  44. Wang L, Ruan F, Lv T, Liu Y, Deng D, Zhao S, et al. One step synthesis of Al/N co-doped carbon nanoparticles with enhanced photoluminescence. J Lumin. 2015;158:1–5.

    Article  CAS  Google Scholar 

  45. Liu S, Tian J, Wang L, Luo Y, Zhai J, Sun X. Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy. J Mater Chem. 2011;21(32):11726–9.

    Article  CAS  Google Scholar 

  46. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Adv Mater. 2012;24(15):2037–41.

    Article  CAS  PubMed  Google Scholar 

  47. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions. Anal Chem. 2012;84(12):5351–7.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Z, Xu M, Liu Y, He F, Gao F, Su Y, et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale. 2014;6(3):1890–5.

    Article  CAS  PubMed  Google Scholar 

  49. Wang D, Markus J, Kim Y-J, Wang C, Pérez ZEJ, Ahn S, et al. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract. Int J Nanomedicine. 2016;11:6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Amjadi M, Hallaj T, Mayan MA. Green synthesis of nitrogen-doped carbon dots from lentil and its application for colorimetric determination of thioridazine hydrochloride. RSC Adv. 2016;6(106):104467–73.

    Article  CAS  Google Scholar 

  51. Xu Q, Su R, Zhong J, Zhang L, Guo Y, Street J, et al. Synthesis of Highly Fluorescent Yellow-Green N-Doped Carbon Nanorings for pH Variation Detection and Bioimaging. Part Part Syst Charact. 2018;35(10):1800276.

    Article  Google Scholar 

  52. Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C. 2014;38:20–7.

    Article  CAS  Google Scholar 

  53. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–4.

    Article  CAS  Google Scholar 

  54. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors Actuators B Chem. 2015;213:434–43.

    Article  CAS  Google Scholar 

  55. Shen J, Shang S, Chen X, Wang D, Cai Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C. 2017;76:856–64.

    Article  CAS  Google Scholar 

  56. Qiao Z, Yao Y, Song S, Yin M, Yang M, Yan D, et al. Gold nanorods with surface charge-switchable activities for enhanced photothermal killing of bacteria and eradication of biofilm. J Mater Chem B. 2020;8(15):3138–49.

    Article  CAS  PubMed  Google Scholar 

  57. Kailasa SK, Ha S, Baek SH, Kim S, Kwak K, Park TJ. Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Mater Sci Eng C. 2019;98:834–42.

    Article  CAS  Google Scholar 

  58. Wang W, Wang Z, Liu J, Peng Y, Yu X, Wang W, et al. One-pot facile synthesis of graphene quantum dots from rice husks for Fe3+ sensing. Ind Eng Chem Res. 2018;57(28):9144–50.

    Article  CAS  Google Scholar 

  59. Shrivastava A, Gupta VB. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2011;2(1):21–5.

    Article  Google Scholar 

  60. Chen Y, Sun X, Pan W, Yu G, Wang J. Fe(3+)-Sensitive Carbon Dots for Detection of Fe(3+) in Aqueous Solution and Intracellular Imaging of Fe(3+) Inside Fungal Cells. Front Chem. 2019;7:911.

    Article  CAS  PubMed  Google Scholar 

  61. Zhu X, Wang J, Zhu Y, Jiang H, Tan D, Xu Z, et al. Green emitting N, S-co-doped carbon dots for sensitive fluorometric determination of Fe (III) and Ag (I) ions, and as a solvatochromic probe. Microchim Acta. 2018;185(11):1–10.

    Article  Google Scholar 

  62. Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B. 2018;170:347–54.

    Article  CAS  Google Scholar 

  63. Han H, Wang L, Liu Y, Shi X, Zhang X, Li M, et al. Combination of curcuma zedoary and kelp inhibits growth and metastasis of liver cancer in vivo and in vitro via reducing endogenous H(2) S levels. Food Funct. 2019;10(1):224–34.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Yan H, Su R, Li P, Wen F, Lv Y, et al. Photoactivated multifunctional nanoplatform based on lysozyme-Au nanoclusters-curcumin conjugates with FRET effect and multiamplified antimicrobial activity. J Drug Deliv Sci Technol. 2022;74:103548.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51961009), the Central Guidance on Local Science and Technology Development Fund of Guangxi Province (Gui Ke ZY22096010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyuan Li or Wei Su.

Ethics declarations

All operations were carried out in accordance with the regulations of Guangxi University of Chinese Medicine Institutional Animal Welfare and Ethical Committee. The studies were approved by the Guangxi University of Chinese Medicine Institutional Animal Welfare and Ethical Committee (Approval No. DW20220726-169). All applicable guidelines for the care and use of animals (mice) in this study were followed, and the studies involving mice were in accordance with the ethical standards of the institution at which the studies were conducted.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1022 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, P., Yan, H. et al. Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria. Anal Bioanal Chem 415, 1917–1931 (2023). https://doi.org/10.1007/s00216-023-04603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04603-z

Keywords

Navigation