Skip to main content
Log in

Advances in wearable electrochemical antibody-based sensors for cortisol sensing

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cortisol is a crucial hormone involving many physiological processes. Hence, cortisol detection is essential. This review highlights the key progress made on wearable electrochemical sensors using antibodies. It covers the design, principle, and electroanalytical methodology for detecting cortisol noninvasively. This article also analyzes and collects the analytical performances of electrochemical cortisol sensors. The development of these sensors continues to face challenges such as biofouling, sample management, sensitivity, flexibility, stability, and recognition layer performance. It is also necessary to develop a sensitive electrode and material. This article also presents potential strategies for designing antibody electrodes and provides examples of sensing systems. Additionally, it discusses the challenges in translating research into practical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25–36. https://doi.org/10.1016/j.psyneuen.2016.11.036.

    Article  CAS  PubMed  Google Scholar 

  2. Fukuda S, Morimoto K. Lifestyle, stress and cortisol response: review II. Environ Health Prev Med. 2001;6(1):15–21. https://doi.org/10.1007/BF02897304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corbalán-Tutau D, Madrid JA, Nicolás F, Garaulet M. Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol Behav. 2014;123:231–5. https://doi.org/10.1016/j.physbeh.2012.06.005.

    Article  CAS  PubMed  Google Scholar 

  4. Kinnamon D, Ghanta R, Lin K-C, Muthukumar S, Prasad S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci Rep. 2017;7(1):13312. https://doi.org/10.1038/s41598-017-13684-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nijm J, Jonasson L. Inflammation and cortisol response in coronary artery disease. Ann Med. 2009;41(3):224–33. https://doi.org/10.1080/07853890802508934.

    Article  CAS  PubMed  Google Scholar 

  6. Mohd Azmi NAS, Juliana N, Azmani S, Mohd Effendy N, Abu IF, Mohd Fahmi Teng NI, et al. Cortisol on circadian rhythm and its effect on cardiovascular system. International journal of environmental research and public health. 2021;18(2):676. https://doi.org/10.3390/ijerph18020676.

  7. Russell E, Koren G, Rieder M, Van Uum SH. The detection of cortisol in human sweat: implications for measurement of cortisol in hair. Ther Drug Monit. 2014;36(1):30–4. https://doi.org/10.1097/FTD.0b013e31829daa0a.

    Article  CAS  PubMed  Google Scholar 

  8. Jia M, Chew WM, Feinstein Y, Skeath P, Sternberg EM. Quantification of cortisol in human eccrine sweat by liquid chromatography – tandem mass spectrometry. Analyst. 2016;141(6):2053–60. https://doi.org/10.1039/C5AN02387D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baid SK, Sinaii N, Wade M, Rubino D, Nieman LK. Radioimmunoassay and tandem mass spectrometry measurement of bedtime salivary cortisol levels: a comparison of assays to establish hypercortisolism. J Clin Endocrinol Metab. 2007;92(8):3102–7. https://doi.org/10.1210/jc.2006-2861.

    Article  CAS  PubMed  Google Scholar 

  10. Abraham G, Buster J, Lucas L, Corrales P, Teller R. Chromatographic separation of steroid hormones for use in radioimmunoassay. Anal Lett. 1972;5(8):509–17. https://doi.org/10.1080/00032717208062116.

    Article  CAS  Google Scholar 

  11. Appel D, Schmid RD, Dragan C-A, Bureik M, Urlacher VB. A fluorimetric assay for cortisol. Anal Bioanal Chem. 2005;383(2):182–6. https://doi.org/10.1007/s00216-005-0022-9.

    Article  CAS  PubMed  Google Scholar 

  12. Gatti R, Cappellin E, Zecchin B, Antonelli G, Spinella P, Mantero F, et al. Urinary high performance reverse phase chromatography cortisol and cortisone analyses before and at the end of a race in elite cyclists. J Chromatogr B. 2005;824(1):51–6. https://doi.org/10.1016/j.jchromb.2005.06.037.

    Article  CAS  Google Scholar 

  13. Kim J, Campbell AS, Wang J. Wearable non-invasive epidermal glucose sensors: a review. Talanta. 2018;177:163–70. https://doi.org/10.1016/j.talanta.2017.08.077.

    Article  CAS  PubMed  Google Scholar 

  14. Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Advanced Science. 2018;5(10):1800880. https://doi.org/10.1002/advs.201800880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lipani L, Dupont BGR, Doungmene F, Marken F, Tyrrell RM, Guy RH, et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat Nanotechnol. 2018;13(6):504–11. https://doi.org/10.1038/s41565-018-0112-4.

    Article  CAS  PubMed  Google Scholar 

  16. Abdullah H, Phairatana T, Jeerapan I. Tackling the challenges of developing microneedle-based electrochemical sensors. Microchim Acta. 2022;189(11):440. https://doi.org/10.1007/s00604-022-05510-3.

    Article  CAS  Google Scholar 

  17. Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable chemical sensors: emerging systems for on-body analytical chemistry. Anal Chem. 2020;92(1):378–96. https://doi.org/10.1021/acs.analchem.9b04668.

    Article  CAS  PubMed  Google Scholar 

  18. Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nature Electronics. 2018;1(3):160–71. https://doi.org/10.1038/s41928-018-0043-y.

    Article  Google Scholar 

  19. Zhao C, Li X, Wu Q, Liu X. A thread-based wearable sweat nanobiosensor. Biosensors and Bioelectronics. 2021;188:113270. https://doi.org/10.1016/j.bios.2021.113270

  20. Ghaffari R, Rogers JA, Ray TR. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sensors and Actuators B: Chemical. 2021;332:129447. https://doi.org/10.1016/j.snb.2021.129447

  21. Moonla C, Lee DH, Rokaya D, Rasitanon N, Kathayat G, Lee W-Y, et al. Review—Lab-in-a-mouth and advanced point-of-care sensing systems: detecting bioinformation from the oral cavity and saliva. ECS Sensors Plus. 2022;1(2):021603. https://doi.org/10.1149/2754-2726/ac7533

  22. Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, et al. A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement. Anal Chem. 2020;92(18):12201–7. https://doi.org/10.1021/acs.analchem.0c01201.

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev. 2019;48(6):1465–91. https://doi.org/10.1039/C7CS00730B.

    Article  CAS  PubMed  Google Scholar 

  24. Lee W-C, Koh EH, Kim D-H, Park S-G, Jung HS. Plasmonic contact lens materials for glucose sensing in human tears. Sensors and Actuators B: Chemical. 2021;344:130297. https://doi.org/10.1016/j.snb.2021.130297

  25. Iguchi S, Kudo H, Saito T, Ogawa M, Saito H, Otsuka K, et al. A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevice. 2007;9(4):603–9. https://doi.org/10.1007/s10544-007-9073-3.

    Article  CAS  Google Scholar 

  26. Sempionatto JR, Brazaca LC, García-Carmona L, Bolat G, Campbell AS, Martin A, et al. Eyeglasses-based tear biosensing system: non-invasive detection of alcohol, vitamins and glucose. Biosens Bioelectron. 2019;137:161–70. https://doi.org/10.1016/j.bios.2019.04.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Tao X, Liu X, Yang L. Wearable eye patch biosensor for noninvasive and simultaneous detection of multiple biomarkers in human tears. Anal Chem. 2022;94(24):8659–67. https://doi.org/10.1021/acs.analchem.2c00614.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Wu H-L, Ding Y-J, Xia AL, Cui H, Yu R-Q. Simultaneous determination of cortisol and prednisolone in body fluids by using HPLC–DAD coupled with second-order calibration based on alternating trilinear decomposition. J Chromatogr B. 2006;840(2):116–23. https://doi.org/10.1016/j.jchromb.2006.04.043.

    Article  CAS  Google Scholar 

  29. Li C, Zhang Z, Liu X, Shen K, Gu P, Kang X. Simultaneous quantification of cortisol and cortisone in urines from infants with packed-fiber solid-phase extraction coupled to HPLC–MS/MS. J Chromatogr B. 2017;1061–1062:163–8. https://doi.org/10.1016/j.jchromb.2017.07.012.

    Article  CAS  Google Scholar 

  30. Pradhan S, Nicholson BD, Albin S, Heise RL, Yadavalli VK. Single-use biomimetic sensors for rapid and sensitive cortisol detection in blood. Biosensors and Bioelectronics: X. 2022;12:100280. https://doi.org/10.1016/j.biosx.2022.100280

  31. Gevaerd A, Watanabe EY, Belli C, Marcolino-Junior LH, Bergamini MF. A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples. Sensors and Actuators B: Chemical. 2021;332:129532. https://doi.org/10.1016/j.snb.2021.129532

  32. Zhou Q, Kannan P, Natarajan B, Maiyalagan T, Subramanian P, Jiang Z, et al. MnO2 cacti-like nanostructured platform powers the enhanced electrochemical immunobiosensing of cortisol. Sensors and Actuators B: Chemical. 2020;317:128134. https://doi.org/10.1016/j.snb.2020.128134

  33. Jeerapan I, Sangsudcha W, Phokhonwong P. Wearable energy devices on mask-based printed electrodes for self-powered glucose biosensors. Sensing and Bio-Sensing Research. 2022;38:100525. https://doi.org/10.1016/j.sbsr.2022.100525

  34. Lin P-H, Sheu S-C, Chen C-W, Huang S-C, Li B-R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta. 2022;241:123187. https://doi.org/10.1016/j.talanta.2021.123187

  35. Jiang D, Xu C, Zhang Q, Ye Y, Cai Y, Li K, et al. In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosensors and Bioelectronics. 2022;210:114303. https://doi.org/10.1016/j.bios.2022.114303

  36. Sekar M, Pandiaraj M, Bhansali S, Ponpandian N, Viswanathan C. Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci Rep. 2019;9(1):403. https://doi.org/10.1038/s41598-018-37243-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ku M, Kim J, Won J-E, Kang W, Park Y-G, Park J, et al. Smart, soft contact lens for wireless immunosensing of cortisol. 2020;6(28):eabb2891. https://doi.org/10.1126/sciadv.abb2891

  38. Yang B, Kong J, Fang X. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta. 2019;204:685–92. https://doi.org/10.1016/j.talanta.2019.06.031.

    Article  CAS  PubMed  Google Scholar 

  39. Patiti C, Sfragano PS, Laschi S, Pillozzi S, Boddi A, Crociani O, et al. Chip-based and wearable tools for isothermal amplification and electrochemical analysis of nucleic acids. Chemosensors. 2022;10(7):278. https://doi.org/10.3390/chemosensors10070278.

    Article  CAS  Google Scholar 

  40. Zhang W, He Y, Feng Z, Zhang J. Recent advances of functional nucleic acid-based sensors for point-of-care detection of SARS-CoV-2. Microchim Acta. 2022;189(3):1–18. https://doi.org/10.1007/s00604-022-05242-4.

    Article  CAS  Google Scholar 

  41. Wu Y, Wang C-W, Wang D, Wei N. A whole-cell biosensor for point-of-care detection of waterborne bacterial pathogens. ACS Synth Biol. 2021;10(2):333–44. https://doi.org/10.1021/acssynbio.0c00491.

    Article  CAS  PubMed  Google Scholar 

  42. Woo S-G, Moon S-J, Kim SK, Kim TH, Lim HS, Yeon G-H, et al. A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing. Biosensors and Bioelectronics. 2020;168:112523. https://doi.org/10.1016/j.bios.2020.112523

  43. Dhull N, Kaur G, Gupta V, Tomar M. Highly sensitive and non-invasive electrochemical immunosensor for salivary cortisol detection. Sens Actuators, B Chem. 2019;293:281–8. https://doi.org/10.1016/j.snb.2019.05.020.

    Article  CAS  Google Scholar 

  44. Madhu S, Ramasamy S, Manickam P, Nagamony P, Chinnuswamy V. TiO2 anchored carbon fibers as non-invasive electrochemical sensor platform for the cortisol detection. Materials Letters. 2022;308:131238. https://doi.org/10.1016/j.matlet.2021.131238

  45. Torrente-Rodríguez RM, Tu J, Yang Y, Min J, Wang M, Song Y, et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter. 2020;2(4):921–37. https://doi.org/10.1016/j.matt.2020.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nah JS, Barman SC, Zahed MA, Sharifuzzaman M, Yoon H, Park C, et al. A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2Tx MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sensors and Actuators B: Chemical. 2021;329:129206. https://doi.org/10.1016/j.snb.2020.129206

  47. Cheng C, Li X, Xu G, Lu Y, Low SS, Liu G, et al. Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication. Biosensors and Bioelectronics. 2021;172:112782. https://doi.org/10.1016/j.bios.2020.112782

  48. Liu Q, Shi W, Tian L, Su M, Jiang M, Li J, et al. Preparation of nanostructured PDMS film as flexible immunosensor for cortisol analysis in human sweat. Analytica Chimica Acta. 2021;1184:339010. https://doi.org/10.1016/j.aca.2021.339010

  49. Liu X, Zhao R, Mao W, Feng H, Liu X, Wong DKY. Detection of cortisol at a gold nanoparticle|Protein G-DTBP-scaffold modified electrochemical immunosensor. Analyst. 2011;136(24):5204–10. https://doi.org/10.1039/C1AN15411G.

    Article  CAS  PubMed  Google Scholar 

  50. Sun B, Gou Y, Ma Y, Zheng X, Bai R, Ahmed Abdelmoaty AA, et al. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. Biosens Bioelectron. 2017;88:55–62. https://doi.org/10.1016/j.bios.2016.07.047.

    Article  CAS  PubMed  Google Scholar 

  51. Tu J, Torrente-Rodríguez RM, Wang M, Gao W. The era of digital health: a review of portable and wearable affinity biosensors. Adv Func Mater. 2020;30(29):1906713. https://doi.org/10.1002/adfm.201906713.

    Article  CAS  Google Scholar 

  52. Sekar M, Sriramprabha R, Sekhar PK, Bhansali S, Ponpandian N, Pandiaraj M, et al. Review—Towards wearable sensor platforms for the electrochemical detection of cortisol. Journal of The Electrochemical Society. 2020;167(6):067508. https://doi.org/10.1149/1945-7111/ab7e24

  53. Zea M, Bellagambi FG, Ben Halima H, Zine N, Jaffrezic-Renault N, Villa R, et al. Electrochemical sensors for cortisol detections: almost there. TrAC Trends in Analytical Chemistry. 2020;132:116058. https://doi.org/10.1016/j.trac.2020.116058

  54. Parlak O. Portable and wearable real-time stress monitoring: a critical review. Sensors and Actuators Reports. 2021;3:100036. https://doi.org/10.1016/j.snr.2021.100036

  55. Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: recent developments. Anal Bioanal Chem. 2021;413(3):727–62. https://doi.org/10.1007/s00216-020-03002-y.

    Article  CAS  PubMed  Google Scholar 

  56. Kaushik A, Vasudev A, Arya SK, Pasha SK, Bhansali S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron. 2014;53:499–512. https://doi.org/10.1016/j.bios.2013.09.060.

    Article  CAS  PubMed  Google Scholar 

  57. Parlak O, Keene ST, Marais A, Curto VF, Salleo A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances. 2018;4(7):eaar2904. https://doi.org/10.1126/sciadv.aar2904

  58. Lee H-B, Meeseepong M, Trung TQ, Kim B-Y, Lee N-E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosensors and Bioelectronics. 2020;156:112133. https://doi.org/10.1016/j.bios.2020.112133

  59. Laochai T, Yukird J, Promphet N, Qin J, Chailapakul O, Rodthongkum N. Non-invasive electrochemical immunosensor for sweat cortisol based on L-cys/AuNPs/MXene modified thread electrode. Biosensors and Bioelectronics. 2022;203:114039. https://doi.org/10.1016/j.bios.2022.114039

  60. Wang Y, Ye Z, Ying Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors. 2012;12(3):3449–71. https://doi.org/10.3390/s120303449.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Trilling AK, Beekwilder J, Zuilhof H. Antibody orientation on biosensor surfaces: a minireview. Analyst. 2013;138(6):1619–27. https://doi.org/10.1039/C2AN36787D.

    Article  CAS  PubMed  Google Scholar 

  62. Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - a critical review. Analytica Chimica Acta. 2022;1189:338907. https://doi.org/10.1016/j.aca.2021.338907

  63. Hashemi P, Afkhami A, Baradaran B, Halabian R, Madrakian T, Arduini F, et al. Well-orientation strategy for direct immobilization of antibodies: development of the immunosensor using the boronic acid-modified magnetic graphene nanoribbons for ultrasensitive detection of lymphoma cancer cells. Anal Chem. 2020;92(16):11405–12. https://doi.org/10.1021/acs.analchem.0c02357.

    Article  CAS  PubMed  Google Scholar 

  64. Feng D, Li L, Fang X, Han X, Zhang Y. Dual signal amplification of horseradish peroxidase functionalized nanocomposite as trace label for the electrochemical detection of carcinoembryonic antigen. Electrochim Acta. 2014;127:334–41. https://doi.org/10.1016/j.electacta.2014.02.072.

    Article  CAS  Google Scholar 

  65. Si Y, Lee HJ. Carbon nanomaterials and metallic nanoparticles-incorporated electrochemical sensors for small metabolites: detection methodologies and applications. Curr Opin Electrochem. 2020;22:234–43. https://doi.org/10.1016/j.coelec.2020.08.007.

    Article  CAS  Google Scholar 

  66. Cho I-H, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomaterials research. 2020;24(1):1–12. https://doi.org/10.1186/s40824-019-0181-y.

    Article  CAS  Google Scholar 

  67. Zhang H, He R, Niu Y, Han F, Li J, Zhang X, et al. Graphene-enabled wearable sensors for healthcare monitoring. Biosensors and Bioelectronics. 2022;197:113777. https://doi.org/10.1016/j.bios.2021.113777

  68. Tian L, Jiang M, Su M, Cao X, Jiang Q, Liu Q, et al. Sweat cortisol determination utilizing MXene and multi-walled carbon nanotube nanocomposite functionalized immunosensor. Microchemical Journal. 2022:108172. https://doi.org/10.1016/j.microc.2022.108172

  69. Manickam P, Fernandez RE, Umasankar Y, Gurusamy M, Arizaleta F, Urizar G, et al. Salivary cortisol analysis using metalloporphyrins and multi-walled carbon nanotubes nanocomposite functionalized electrodes. Sens Actuators, B Chem. 2018;274:47–53. https://doi.org/10.1016/j.snb.2018.07.133.

    Article  CAS  Google Scholar 

  70. Kaushik A, Vasudev A, Arya SK, Bhansali S. Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO–polyaniline hybrid nanocomposite. Biosens Bioelectron. 2013;50:35–41. https://doi.org/10.1016/j.bios.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  71. Vabbina PK, Kaushik A, Pokhrel N, Bhansali S, Pala N. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes. Biosens Bioelectron. 2015;63:124–30. https://doi.org/10.1016/j.bios.2014.07.026.

    Article  CAS  PubMed  Google Scholar 

  72. Arya SK, Dey A, Bhansali S. Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosens Bioelectron. 2011;28(1):166–73. https://doi.org/10.1016/j.bios.2011.07.015.

    Article  CAS  PubMed  Google Scholar 

  73. Munje RD, Muthukumar S, Panneer Selvam A, Prasad S. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci Rep. 2015;5(1):14586. https://doi.org/10.1038/srep14586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim KS, Lim SR, Kim S-E, Lee JY, Chung C-H, Choe W-S, et al. Highly sensitive and selective electrochemical cortisol sensor using bifunctional protein interlayer-modified graphene electrodes. Sens Actuators, B Chem. 2017;242:1121–8. https://doi.org/10.1016/j.snb.2016.09.135.

    Article  CAS  Google Scholar 

  75. Vasudev A, Kaushik A, Tomizawa Y, Norena N, Bhansali S. An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sens Actuators, B Chem. 2013;182:139–46. https://doi.org/10.1016/j.snb.2013.02.096.

    Article  CAS  Google Scholar 

  76. Moreno-Guzmán M, Eguílaz M, Campuzano S, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Disposable immunosensor for cortisol using functionalized magnetic particles. Analyst. 2010;135(8):1926–33. https://doi.org/10.1039/C0AN00206B.

    Article  PubMed  Google Scholar 

  77. Pasha SK, Kaushik A, Vasudev A, Snipes SA, Bhansali S. Electrochemical immunosensing of saliva cortisol. J Electrochem Soc. 2014;161(2):B3077. https://doi.org/10.1149/2.017402jes.

    Article  CAS  Google Scholar 

  78. Tuteja SK, Ormsby C, Neethirajan S. Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-Micro Letters. 2018;10(3):41. https://doi.org/10.1007/s40820-018-0193-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Demuru S, Kim J, El Chazli M, Bruce S, Dupertuis M, Binz P-A, et al. Antibody-coated wearable organic electrochemical transistors for cortisol detection in human sweat. ACS Sensors. 2022;7(9):2721–31. https://doi.org/10.1021/acssensors.2c01250.

    Article  CAS  PubMed  Google Scholar 

  80. Rice P, Upasham S, Jagannath B, Manuel R, Pali M, Prasad S. CortiWatch: watch-based cortisol tracker. Future Science OA. 2019;5(9):FSO416. https://doi.org/10.2144/fsoa-2019-0061

  81. Shajari S, Salahandish R, Zare A, Hassani M, Moossavi S, Munro E, et al. MicroSweat: a wearable microfluidic patch for noninvasive and reliable sweat collection enables human stress monitoring. Advanced Science. 2022;n/a(n/a):2204171. https://doi.org/10.1002/advs.202204171

  82. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev. 2020;120(8):3852–89. https://doi.org/10.1021/acs.chemrev.9b00739.

    Article  CAS  PubMed  Google Scholar 

  83. Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, et al. Electrochemical diagnostics of infectious viral diseases: trends and challenges. Biosensors and Bioelectronics. 2021;180:113112. https://doi.org/10.1016/j.bios.2021.113112

  84. Liu N, Xu Z, Morrin A, Luo X. Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Anal Methods. 2019;11(6):702–11. https://doi.org/10.1039/C8AY02674B.

    Article  Google Scholar 

  85. Bandodkar AJ, Choi J, Lee SP, Jeang WJ, Agyare P, Gutruf P, et al. Soft, Skin-interfaced microfluidic systems with passive galvanic stopwatches for precise chronometric sampling of sweat. Adv Mater. 2019;31(32):1902109. https://doi.org/10.1002/adma.201902109.

    Article  CAS  Google Scholar 

  86. Saha T, Songkakul T, Knisely CT, Yokus MA, Daniele MA, Dickey MD, et al. Wireless wearable electrochemical sensing platform with zero-power osmotic sweat extraction for continuous lactate monitoring. ACS Sensors. 2022;7(7):2037–48. https://doi.org/10.1021/acssensors.2c00830.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang H, Zhang D-Z, Wang D-Y, Xu Z-Y, Yang Y, Zhang B. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 2022;41(9):3117–28. https://doi.org/10.1007/s12598-022-02031-z.

    Article  CAS  Google Scholar 

  88. Maji D, Das D, Wala J, Das S. Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications. Sci Rep. 2015;5(1):17776. https://doi.org/10.1038/srep17776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Özmen EN, Kartal E, Turan MB, Yazıcıoğlu A, Niazi JH, Qureshi A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: a review. Materials Science and Engineering: C. 2021;129:112356. https://doi.org/10.1016/j.msec.2021.112356

  90. Abu Nayem SM, Shaheen Shah S, Sultana N, Aziz MA, Saleh Ahammad AJ. Electrochemical sensing platforms of dihydroxybenzene: Part 1 – Carbon nanotubes, graphene, and their derivatives. Chem Rec. 2021;21(5):1039–72. https://doi.org/10.1002/tcr.202100043.

    Article  CAS  PubMed  Google Scholar 

  91. Ahirwar R. Recent advances in nanomaterials-based electrochemical immunosensors and aptasensors for HER2 assessment in breast cancer. Microchim Acta. 2021;188(10):317. https://doi.org/10.1007/s00604-021-04963-2.

    Article  CAS  Google Scholar 

  92. Sun X, Zhao C, Li H, Yu H, Zhang J, Qiu H, et al. Wearable near-field communication sensors for healthcare: materials, fabrication and application. Micromachines. 2022;13(5):784. https://doi.org/10.3390/mi13050784.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Olenik S, Lee HS, Güder F. The future of near-field communication-based wireless sensing. Nat Rev Mater. 2021;6(4):286–8. https://doi.org/10.1038/s41578-021-00299-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu Y, Mechael SS, Carmichael TB. Wearable E-textiles using a textile-centric design approach. Acc Chem Res. 2021;54(21):4051–64. https://doi.org/10.1021/acs.accounts.1c00433.

    Article  CAS  PubMed  Google Scholar 

  95. Choudhry NA, Arnold L, Rasheed A, Khan IA, Wang L. Textronics—a review of textile-based wearable electronics. Adv Eng Mater. 2021;23(12):2100469. https://doi.org/10.1002/adem.202100469.

    Article  Google Scholar 

  96. Xia J, Khaliliazar S, Hamedi MM, Sonkusale S. Thread-based wearable devices. MRS Bull. 2021;46(6):502–11. https://doi.org/10.1557/s43577-021-00116-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Talent Management Project of Prince of Songkla University and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research, and Innovation (MHESI).

Funding

I.J. received support from the National Research Council of Thailand (NRCT, Grant No. N41A640129), Prince of Songkla University, Hat Yai, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itthipon Jeerapan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khumngern, S., Jeerapan, I. Advances in wearable electrochemical antibody-based sensors for cortisol sensing. Anal Bioanal Chem 415, 3863–3877 (2023). https://doi.org/10.1007/s00216-023-04577-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04577-y

Keywords

Navigation