Skip to main content
Log in

Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under “gentle” (i.e., low energy) ion transmission conditions with structures measured under “harsh” (i.e., higher energy) transmission. This work confirms that when using “gentle” instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, “harsh” conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lossl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J. 2016;35(24):2634–57.

    Article  Google Scholar 

  2. Hodge EA, Benhaim MA, Lee KK. Bridging protein structure, dynamics, and function using hydrogen/deuterium-exchange mass spectrometry. Protein Sci. 2020;29(4):843–55.

    Article  CAS  Google Scholar 

  3. Sinz A, Arlt C, Chorev D, Sharon M. Chemical cross-linking and native mass spectrometry: a fruitful combination for structural biology. Protein Sci. 2015;24(8):1193–209.

    Article  CAS  Google Scholar 

  4. Clemmer DE, Russell DH, Williams ER. Characterizing the conformationome: toward a structural understanding of the proteome. Acc Chem Res. 2017;50(3):556–60.

    Article  CAS  Google Scholar 

  5. Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science. 2012;338(6110):1042–6.

    Article  CAS  Google Scholar 

  6. Shen H-B, Chou K-C. QuatIdent: a web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information. J Prot Res. 2009;8(3):1577–84.

    Article  CAS  Google Scholar 

  7. Chavez JD, Bruce JE. Chemical cross-linking with mass spectrometry: a tool for systems structural biology. Curr Opin Chem Biol. 2019;48:8–18.

    Article  CAS  Google Scholar 

  8. Yee AA, Savchenko A, Ignachenko A, Lukin J, Xu X, Skarina T, et al. NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc. 2005;127(47):16512–7.

    Article  CAS  Google Scholar 

  9. Wells JN, Marsh JA. Experimental characterization of protein complex structure, dynamics, and assembly. In: Marsh JA, editor. Protein Complex Assembly: Methods and Protocols. New York, NY: Springer New York; 2018. p. 3–27.

    Chapter  Google Scholar 

  10. Kaltashov IA, Eyles SJ. Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom Rev. 2002;21(1):37–71.

    Article  CAS  Google Scholar 

  11. Smith DP, Giles K, Bateman RH, Radford SE, Ashcroft AE. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J Am Soc Mass Spectrom. 2007;18(12):2180–90.

    Article  CAS  Google Scholar 

  12. Ow Y-LP, Green DR, Hao Z, Mak TW. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008;9(7):532–42.

    Article  CAS  Google Scholar 

  13. Stevens JM, Mavridou DA, Hamer R, Kritsiligkou P, Goddard AD, Ferguson SJ. Cytochrome c biogenesis System I. FEBS J. 2011;278(22):4170–8.

    Article  CAS  Google Scholar 

  14. Colón W, Elöve GA, Wakem LP, Sherman F, Roder H. Side chain packing of the N- and C-terminal helices plays a critical role in the kinetics of cytochrome c folding. Biochem. 1996;35(17):5538–49.

    Article  Google Scholar 

  15. Englander SW, Sosnick TR, Mayne LC, Shtilerman M, Qi PX, Bai Y. Fast and slow folding in cytochrome c. Accounts of Chemical Research. 1998;31(11):737–44.

    Article  CAS  Google Scholar 

  16. Travaglini-Allocatelli C, Gianni S, Brunori M. A common folding mechanism in the cytochrome c family. Trends Biochem Sci. 2004;29(10):535–41.

    Article  CAS  Google Scholar 

  17. Roder H, Elove GA, Englander SW. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature. 1988;335(6192):700–4.

    Article  CAS  Google Scholar 

  18. Leney AC, Heck AJR. Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom. 2017;28(1):5–13.

    Article  CAS  Google Scholar 

  19. Zhang H, Cui W, Gross ML. Native electrospray ionization and electron-capture dissociation for comparison of protein structure in solution and the gas phase. Int J Mass Spectrom. 2013;354-355:https://doi.org/10.1016/j.ijms.2013.06.019.

  20. Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA. Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem. 2009;394(1):235–44.

    Article  CAS  Google Scholar 

  21. Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc. 1998;120(13):3265–6.

    Article  CAS  Google Scholar 

  22. Breuker K, Oh H, Lin C, Carpenter BK, McLafferty FW. Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc Natl Acad Sci USA. 2004;101(39):14011–6.

    Article  CAS  Google Scholar 

  23. Wilson DJ, Konermann L. A capillary mixer with adjustable reaction chamber volume for millisecond time-resolved studies by electrospray mass spectrometry. Anal Chem. 2003;75(23):6408–14.

    Article  CAS  Google Scholar 

  24. Zinck N, Stark AK, Wilson DJ, Sharon M. An improved rapid mixing device for time-resolved electrospray mass spectrometry measurements. Chemistryopen. 2014;3(3):109–14.

    Article  CAS  Google Scholar 

  25. Liuni P, Deng B, Wilson DJ. Comparing equilibrium and kinetic protein unfolding using time-resolved electrospray-coupled ion mobility mass spectrometry. Analyst. 2015;140(20):6973–9.

    Article  CAS  Google Scholar 

  26. Wyttenbach T, Bowers MT. Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J Phys Chem B. 2011;115(42):12266–75.

    Article  CAS  Google Scholar 

  27. Breuker K, Oh H, Horn DM, Cerda BA, McLafferty FW. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J Am Chem Soc. 2002;124(22):6407–20.

    Article  CAS  Google Scholar 

  28. Skinner OS, McLafferty FW, Breuker K. How ubiquitin unfolds after transfer into the gas phase. J Am Soc Mass Spectrom. 2012;23(6):1011–4.

    Article  CAS  Google Scholar 

  29. Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV. Evidence for macromolecular protein rings in the absence of bulk water. Science. 2005;310(5754):1658–61.

    Article  CAS  Google Scholar 

  30. Ruotolo BT, Robinson CV. Aspects of native proteins are retained in vacuum. Curr Opin Chem Biol. 2006;10(5):402–8.

    Article  CAS  Google Scholar 

  31. Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, Poulsen FM, et al. Probing the nature of noncovalent interactions by mass spectrometry. A study of protein-CoA ligand binding and assembly. J Am Chem Soc. 1996;118(36):8646–53.

    Article  CAS  Google Scholar 

  32. Seo J, Hoffmann W, Warnke S, Bowers MT, Pagel K, von Helden G. Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed. 2016;55(45):14173–6.

    Article  CAS  Google Scholar 

  33. Merenbloom SI, Flick TG, Williams ER. How hot are your ions in TWAVE ion mobility spectrometry? J Am Soc Mass Spectrom. 2012;23(3):553–62.

    Article  CAS  Google Scholar 

  34. Konermann L, Collings BA, Douglas DJ. Cytochrome c folding kinetics studied by time-resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36(18):5554–9.

    Article  CAS  Google Scholar 

  35. Konermann L, Pan J, Wilson DJ. Protein folding mechanisms studied by time-resolved electrospray mass spectrometry. Biotechniques. 2006;40(2):135–41.

    Article  CAS  Google Scholar 

  36. Revercomb HE, Mason EA. Theory of plasma chromatography/gaseous electrophoresis. Review. Anal Chem. 1975;47(7):970–83.

    Article  CAS  Google Scholar 

  37. Park J, Piehowski PD, Wilkins C, Zhou M, Mendoza J, Fujimoto GM, et al. Informed-proteomics: open-source software package for top-down proteomics. Nat Methods. 2017;14(9):909–14.

    Article  CAS  Google Scholar 

  38. Fellers RT, Greer JB, Early BP, Yu X, LeDuc RD, Kelleher NL, et al. ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics. 2015;15(7):1235–8.

    Article  CAS  Google Scholar 

  39. Kaltashov IA, Mohimen A. Estimates of protein surface areas in solution by electrospray ionization mass spectrometry. Anal Chem. 2005;77(16):5370–9.

    Article  CAS  Google Scholar 

  40. Chen S-H, Russell DH. How closely related are conformations of protein ions sampled by IM-MS to native solution structures? J Am Soc Mass Spectrom. 2015;26(9):1433–43.

    Article  CAS  Google Scholar 

  41. Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst. 2019;144(21):6157–71.

    Article  CAS  Google Scholar 

  42. Konermann L, Douglas DJ. Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochem. 1997;36(40):12296–302.

    Article  CAS  Google Scholar 

  43. Goto Y, Hagihara Y, Hamada D, Hoshino M, Nishii I. Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in water and deuterium oxide. Biochem. 1993;32(44):11878–85.

    Article  CAS  Google Scholar 

  44. Rob T, Wilson DJ. A versatile microfluidic chip for millisecond time-scale kinetic studies by electrospray mass spectrometry. J Am Soc Mass Spectrom. 2009;20(1):124–30.

    Article  CAS  Google Scholar 

  45. Winkler JR. Cytochrome c folding dynamics. Curr Opin Chem Biol. 2004;8(2):169–74.

    Article  CAS  Google Scholar 

  46. Yin V, Konermann L. Probing the effects of heterogeneous oxidative modifications on the stability of cytochrome c in solution and in the gas phase. J Am Soc Mass Spectrom. 2021;32(1):73–83.

    Article  CAS  Google Scholar 

  47. Borotto NB, Osho KE, Richards TK, Graham KA. Collision-induced unfolding of native-like protein ions within a trapped ion mobility spectrometry device. J Am Soc Mass Spectrom. 2022;33(1):83–9.

    Article  CAS  Google Scholar 

  48. Fisher WR, Taniuchi H, Anfinsen CB. On the role of heme in the formation of the structure of cytochrome c. J Biol Chem. 1973;248(9):3188–95.

    Article  CAS  Google Scholar 

  49. Xu Y, Mayne L, Englander SW. Evidence for an unfolding and refolding pathway in cytochrome c. Nat Struct Biol. 1998;5(9):774–8.

    Article  CAS  Google Scholar 

  50. Bushnell GW, Louie GV, Brayer GD. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990;214(2):585–95.

    Article  CAS  Google Scholar 

  51. Zhang Z, Vachet RW. Gas-phase protein salt bridge stabilities from collisional activation and electron transfer dissociation. Int J Mass Spectrom. 2017;420:51–6.

    Article  CAS  Google Scholar 

  52. Molano-Arevalo JC, Jeanne Dit Fouque K, Pham K, Miksovska J, Ridgeway ME, Park MA, et al. Characterization of intramolecular interactions of cytochrome c using hydrogen-deuterium exchange-trapped ion mobility spectrometry-mass spectrometry and molecular dynamics. Anal Chem. 2017;89(17):8757–65.

    Article  CAS  Google Scholar 

  53. Zhong Y, Han L, Ruotolo BT. Collisional and coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew Chem Int Ed Engl. 2014;53(35):9209–12.

    Article  CAS  Google Scholar 

  54. Breuker K, McLafferty FW. Stepwise evolution of protein native structure with electrospray into the gas phase, 10(-12) to 10(2) s. Proc Natl Acad Sci U S A. 2008;105(47):18145–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Derek Wilson and his research group for helpful discussions.

Funding

Portions of this work were funded by the National Science Foundation CAREER CHE-2143755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian K. Webb.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

ABC Highlights: authored by Rising Stars and Top Experts.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 517 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cain, R.L., Webb, I.K. Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions. Anal Bioanal Chem 415, 749–758 (2023). https://doi.org/10.1007/s00216-022-04501-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04501-w

Keywords

Navigation