Skip to main content
Log in

Unraveling the impact of the capsule material on the aroma of brewed coffee by headspace analysis using a HiSorb probe followed by reverse fill/flush flow modulation GC×GC-MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present paper discusses the use of a high-concentration-capacity tool, HiSorb, to investigate the impact of capsule material on the aroma profile of espresso-brewed coffee. The specific high-concentration-capacity probe used is characterized by a sorbent volume (63 μL) intermediate between the solid-phase microextraction (SPME) fiber (0.6 μL) and the stir-bar sorptive extraction rod (126 μL). The extraction performance of the HiSorb was compared, in terms of both absolute signal and compound coverage, with both an equivalent sorbent (polydimethylsiloxane) and a divinylbenzene/carboxen/polydimethylsiloxane SPME fiber using both targeted and untargeted approaches. The HiSorb showed superior extraction compared with the SPME fibers. The HiSorb was then optimized in terms of extraction time and temperature and used to investigate the volatile profile of 23 espresso-brewed coffees prepared with capsules made of different materials—aluminum, compostable, and aluminum multilayer pack—prepared using a refillable capsule. Comprehensive two-dimensional gas chromatography equipped with a reverse fill/flush flow modulator and coupled to mass spectrometry was used to obtain a chromatographic fingerprint of the volatile profile of the brewed coffee. The data were aligned and compared using a tile-based approach, and the results were obtained by performing raw data mining within the same software platform. The data mining enabled the extraction of informative features responsible for the differentiation between the different capsule materials, showing a significant depletion in aroma intensity in the compostable capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pawliszyn J. Handbook of Solid Phase Microextraction, First. London: Elsevier Inc.; 2012.

    Google Scholar 

  2. Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC - Trends Anal Chem. 2013;50:78–84. https://doi.org/10.1016/j.trac.2013.04.010.

    Article  CAS  Google Scholar 

  3. Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC - Trends Anal Chem. 2021;138:116223. https://doi.org/10.1016/j.trac.2021.116223.

    Article  CAS  Google Scholar 

  4. Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J Microcolumn. 1999;11:737–47. https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  5. David F, Ochiai N, Sandra P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. TrAC - Trends Anal Chem. 2019;112:102–11. https://doi.org/10.1016/j.trac.2018.12.006.

    Article  CAS  Google Scholar 

  6. Kremser A, Jochmann MA, Schmidt TC. PAL SPME Arrow - Evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal Bioanal Chem. 2016;408:943–52. https://doi.org/10.1007/s00216-015-9187-z.

    Article  CAS  PubMed  Google Scholar 

  7. Helin A, Rönkkö T, Parshintsev J, Hartonen K, Schilling B, Läubli T, Riekkola ML. Solid phase microextraction Arrow for the sampling of volatile amines in wastewater and atmosphere. J Chromatogr A. 2015;1426:56–63. https://doi.org/10.1016/j.chroma.2015.11.061.

    Article  CAS  PubMed  Google Scholar 

  8. Scheuler KH, Schilling C (2014) Extraction Device. US 20140220701 A1, n.d.

  9. Herrington JS, Gómez-Ríos GA, Myers C, Stidsen G, Bell DS. Hunting molecules in complex matrices with spme arrows: A review. Separations. 2020;7:12. https://doi.org/10.3390/separations7010012.

    Article  CAS  Google Scholar 

  10. Elia S, Stylianou M, Agapiou A. Aroma characterization of raw and electrochemically treated goat whey wastewater. Sustain Chem Pharm. 2022;27:100640. https://doi.org/10.1016/j.scp.2022.100640.

    Article  CAS  Google Scholar 

  11. Cheng Z, Mannion DT, O’sullivan MG, Miao S, Kerry JP, Kilcawley KN. Comparison of automated extraction techniques for volatile analysis of whole milk powder. Foods. 2021;10:1–19. https://doi.org/10.3390/foods10092061.

    Article  CAS  Google Scholar 

  12. Faulkner H, O’Callaghan TF, McAuliffe S, Hennessy D, Stanton C, O’Sullivan MG, Kerry JP, Kilcawley KN. Effect of different forage types on the volatile and sensory properties of bovine milk. J Dairy Sci. 2018;101:1034–47. https://doi.org/10.3168/jds.2017-13141.

    Article  CAS  PubMed  Google Scholar 

  13. Clarke HJ, Fitzpatrick E, Hennessy D, O’Sullivan MG, Kerry JP, Kilcawley KN. The Influence of Pasture and Non-pasture-Based Feeding Systems on the Aroma of Raw Bovine Milk. Front Nutr. 2022;9:841454. https://doi.org/10.3389/fnut.2022.841454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grabež V, Egelandsdal B, Cruz A, Hallenstvedt E, Mydland LT, Alvseike O, Kåsin K, Ruud L, Karlsen V, Øverland M. Understanding metabolic phenomena accompanying high levels of yeast in broiler chicken diets and resulting carcass weight and meat quality changes. Poult Sci. 2022;101:101749. https://doi.org/10.1016/j.psj.2022.101749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee Díaz AS, Rizaludin MS, Zweers H, Raaijmakers JM, Garbeva P. Exploring the Volatiles Released from Roots of Wild and Domesticated Tomato Plants under Insect Attack. Molecules. 2022;27:1612. https://doi.org/10.3390/molecules27051612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zanardi OZ, Volpe HXL, Luvizotto RAG, Magnani RF, Gonzalez F, Calvo C, Oehlschlager CA, Lehan BJ, Esperança V, Delfino JY, de Freitas R, de Carvalho RI, Mulinari TA, Miranda MP, Bento JMS, Leal WS. Laboratory and field evaluation of acetic acid-based lures for male Asian citrus psyllid, Diaphorina citri. Sci Rep. 2019;9:1–10. https://doi.org/10.1038/s41598-019-49469-3.

    Article  CAS  Google Scholar 

  17. Alberti S, Sotiropoulou M, Fernández E, Solomou N, Ferretti M, Psillakis E. UV-254 degradation of nicotine in natural waters and leachates produced from cigarette butts and heat-not-burn tobacco products. Environ Res. 2021;194:110695. https://doi.org/10.1016/j.envres.2020.110695.

    Article  CAS  PubMed  Google Scholar 

  18. Brown RW, Mayser JP, Widdowson C, Chadwick DR, Jones DL. Dependence of thermal desorption method for profiling volatile organic compound (VOC) emissions from soil. Soil Biol Biochem. 2021;160:108313. https://doi.org/10.1016/j.soilbio.2021.108313.

    Article  CAS  Google Scholar 

  19. Hearn L, Cole R, Spadafora ND, Szafnauer R. Volatile and semi-volatile compounds in flavoured hard seltzer beverages: Comparison of high-capacity sorptive extraction (HiSorb) methods. Adv Sample Prep. 2022;3:100032. https://doi.org/10.1016/j.sampre.2022.100032.

    Article  Google Scholar 

  20. Wang X, Wang Y, Hu G, Hong D, Guo T, Li J, Li Z, Qiu M. Review on factors affecting coffee volatiles: from seed to cup. J Sci Food Agric. 2022;102:1341–52. https://doi.org/10.1002/jsfa.11647.

    Article  CAS  PubMed  Google Scholar 

  21. Angeloni S, Mustafa AM, Abouelenein D, Alessandroni L, Acquaticci L, Nzekoue FK, Petrelli R, Sagratini G, Vittori S, Torregiani E, Caprioli G. Characterization of the aroma profile and main key odorants of espresso coffee. Molecules. 2021;26:1–29. https://doi.org/10.3390/molecules26133856.

    Article  CAS  Google Scholar 

  22. Semmelroch P, Grosch W. Studies on character impact Odorants of coffee brews. J Agric Food Chem. 1996;44:537–43. https://doi.org/10.1021/jf9505988.

    Article  CAS  Google Scholar 

  23. Blank I, Sen A, Grosch W. Potent odorants of the roasted powder and brew of Arabica coffee. Z Leb Unters Forsch. 1992;195:239–45. https://doi.org/10.1007/BF01202802.

    Article  CAS  Google Scholar 

  24. Bressanello D, Liberto E, Cordero C, Rubiolo P, Pellegrino G, Ruosi MR, Bicchi C. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC–MS to describe the sensory properties in cup. Food Chem. 2017;214:218–26. https://doi.org/10.1016/j.foodchem.2016.07.088.

    Article  CAS  PubMed  Google Scholar 

  25. Cordoba N, Fernandez-Alduenda M, Moreno FL, Ruiz Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci Technol. 2020;96:45–60. https://doi.org/10.1016/j.tifs.2019.12.004.

    Article  CAS  Google Scholar 

  26. de Figueiredo Tavares MP, Mourad AL. Coffee beverage preparation by different methods from an environmental perspective. Int J Life Cycle Assess. 2020;25:1356–67. https://doi.org/10.1007/s11367-019-01719-2.

    Article  CAS  Google Scholar 

  27. Greco G, Núñez-Carmona E, Abbatangelo M, Fava P, Sberveglieri V. How coffee capsules affect the volatilome in espresso coffee. Separations. 2021;8:248. https://doi.org/10.3390/separations8120248.

    Article  CAS  Google Scholar 

  28. Lolli V, Acharjee A, Angelino D, Tassotti M, Del Rio D, Mena P, Caligiani A. Chemical Characterization of Capsule-Brewed Espresso Coffee Aroma from the Most Widespread Italian Brands by HS-SPME/GC-MS. Molecules. 2020;25:1166. https://doi.org/10.3390/molecules25051166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bicchi C, Iori C, Rubiolo P, Sandra P. Headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE), and solid phase microextraction (SPME) applied to the analysis of roasted Arabica coffee and coffee brew. J Agric Food Chem. 2002;50:449–59. https://doi.org/10.1021/jf010877x.

    Article  CAS  PubMed  Google Scholar 

  30. Massart D. Chemometrics : a textbook. New York: Elsevier Science Ltd.; 1988.

    Google Scholar 

  31. Smolinska A, Hauschild A-C, Fijten RRR, Dallinga JW, Baumbach J, van Schooten FJ. Current breathomics—a review on data pre-processing techniques and machine learning in metabolomics breath analysis. J Breath Res. 2014;8:027105. https://doi.org/10.1088/1752-7155/8/2/027105.

    Article  CAS  PubMed  Google Scholar 

  32. Hearn L, Cole R, Spadafora ND, Szafnauer R. Volatile and semi-volatile compounds in flavoured hard seltzer beverages: Comparison of high-capacity sorptive extraction (HiSorb) methods. Adv Sample Prep. 2022;3:100032. https://doi.org/10.1016/j.sampre.2022.100032.

    Article  Google Scholar 

  33. Mascrez S, Eggermont D, Purcaro G. SPME and chromatographic fingerprints in food analysis. In: Pawliszyn J (ed) Evolution ofSolid Phase Microextraction Technology. Royal Society of Chemistry, p in press; 2022.

  34. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem. 2018;90:302–60. https://doi.org/10.1021/acs.analchem.7b04502.

    Article  CAS  PubMed  Google Scholar 

  35. Risticevic S, DeEll JR, Pawliszyn J. Solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for high-resolution metabolite profiling in apples: Implementation of structured separations for optimization of sample preparation. J Chromatogr A. 2012;1251:208–18. https://doi.org/10.1016/j.chroma.2012.06.052.

    Article  CAS  PubMed  Google Scholar 

  36. Kolb B, Ettre LS. Static Headspace–Gas Chromatography: theory and Practice. 2nd ed. Hoboken: John Wiley & Son; 2006.

    Book  Google Scholar 

  37. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, Sandra P. Impact of phase ratio, polydimethylsiloxane volume and size, and sampling temperature and time on headspace sorptive extraction recovery of some volatile compounds in the essential oil field. J Chromatogr A. 2005;1071:111–8. https://doi.org/10.1016/j.chroma.2004.09.054.

    Article  CAS  PubMed  Google Scholar 

  38. Abraham J, Diller K. A Review of Hot Beverage Temperatures—Satisfying Consumer Preference and Safety. J Food Sci. 2019;84:2011–4. https://doi.org/10.1111/1750-3841.14699.

    Article  CAS  PubMed  Google Scholar 

  39. Chiralertpong A, Acree TE, Barnard J, Siebert KJ. Taste–Odor integration in espresso coffee. Chemosens Percept. 2008;1:147–52. https://doi.org/10.1007/s12078-008-9018-0.

    Article  Google Scholar 

  40. Pua A, Lau H, Liu SQ, Tan LP, Goh RMV, Lassabliere B, Leong KC, Sun J, Cornuz M, Yu B. Improved detection of key odourants in Arabica coffee using gas chromatography-olfactometry in combination with low energy electron ionisation gas chromatography-quadrupole time-of-flight mass spectrometry. Food Chem. 2020;302:125370. https://doi.org/10.1016/j.foodchem.2019.125370.

    Article  CAS  PubMed  Google Scholar 

  41. Akiyama M, Murakami K, Hirano Y, Ikeda M, Iwatsuki K, Wada A, Tokuno K, Onishi M, Iwabuchi H. Characterization of headspace aroma compounds of freshly brewed arabica coffees and studies on a characteristic aroma compound of Ethiopian coffee. J Food Sci. 2008;73:C335–46. https://doi.org/10.1111/j.1750-3841.2008.00752.x.

    Article  CAS  PubMed  Google Scholar 

  42. Cordero C, Liberto E, Bicchi C, Rubiolo P, Reichenbach SE, Tian X, Tao Q. Targeted and non-targeted approaches for complex natural sample profiling by GC×GC-qMS. J Chromatogr Sci. 2010;48:251–61. https://doi.org/10.1093/chromsci/48.4.251.

    Article  CAS  PubMed  Google Scholar 

  43. Marney LC, Christopher Siegler W, Parsons BA, Hoggard JC, Wright BW, Synovec RE. Tile-based Fisher-ratio software for improved feature selection analysis of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry data. Talanta. 2013;115:887–95. https://doi.org/10.1016/j.talanta.2013.06.038.

    Article  CAS  PubMed  Google Scholar 

  44. Greco G, Núñez-Carmona E, Abbatangelo M, Fava P, Sberveglieri V. How coffee capsules affect the volatilome in espresso coffee. Separations. 2021;8. https://doi.org/10.3390/separations8120248.

  45. Glöss AN, Schönbächler B, Rast M, Deuber L, Yeretzian C. Freshness indices of roasted coffee: Monitoring the loss of freshness for single serve capsules and roasted whole beans in different packaging. Chimia (Aarau). 2014;68:179–82. https://doi.org/10.2533/chimia.2014.179.

    Article  CAS  PubMed  Google Scholar 

  46. Naudé Y, Rohwer ER. Investigating the coffee flavour in South African Pinotage wine using novel offline olfactometry and comprehensive gas chromatography with time of flight mass spectrometry. J Chromatogr A. 2013;1271:176–80. https://doi.org/10.1016/j.chroma.2012.11.019.

    Article  CAS  PubMed  Google Scholar 

  47. Caporaso N, Genovese A, Canela MD, Civitella A, Sacchi R. Neapolitan coffee brew chemical analysis in comparison to espresso, moka and American brews. Food Res Int. 2014;61:152–60. https://doi.org/10.1016/j.foodres.2014.01.020.

    Article  CAS  Google Scholar 

  48. Sunarharum WB, Williams DJ, Smyth HE. Complexity of coffee flavor: A compositional and sensory perspective. Food Res Int. 2014;62:315–25. https://doi.org/10.1016/j.foodres.2014.02.030.

    Article  CAS  Google Scholar 

  49. Hashim L, Chaveron H. Use of methylpyrazine ratios to monitor the coffee roasting. Food Res Int. 1996;28:619–23. https://doi.org/10.1016/0963-9969(95)00037-2.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Shimadzu, Markes, SepSolve, and MilliporeSigma for their support. This article is based upon work from the Sample Preparation Study Group and Network, supported by the Division of Analytical Chemistry of the European Chemical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Purcaro.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Published in the topical collection Comprehensive 2D Chromatography with guest editors Peter Q. Tranchida and Luigi Mondello.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 29.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggermont, D., Spadafora, N.D., Aspromonte, J. et al. Unraveling the impact of the capsule material on the aroma of brewed coffee by headspace analysis using a HiSorb probe followed by reverse fill/flush flow modulation GC×GC-MS. Anal Bioanal Chem 415, 2511–2521 (2023). https://doi.org/10.1007/s00216-022-04457-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04457-x

Keywords

Navigation