Skip to main content

Advertisement

Log in

Diagnosis accuracy of Raman spectroscopy in the diagnosis of breast cancer: a meta-analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To investigate the diagnostic efficiency of Raman spectroscopy for the diagnosis of breast cancer, we searched PubMed, Web of Science, Cochrane Library, and Embase for articles published from the database establishment to May 20, 2022. Pooled sensitivity, specificity, diagnostic odds ratio, and area under the receiver pooled operating characteristic curve were derived for the included studies as outcome measures. The methodological quality was assessed according to the questionnaires and criteria suggested by the Diagnostic Accuracy Research Quality Assessment-2 tool. Sixteen studies were included in this meta-analysis. The pooled sensitivity and specificity of Raman spectroscopy for breast cancer diagnosis were 0.97 (95% CI, [0.92–0.99]) and 0.96 (95% CI, [0.91–0.98]). The diagnostic odds ratio was 720.89 (95% CI, [135.73–3828.88]) and the area under the curve of summary receiver operating characteristic curves was 0.99 (95% CI, [0.98–1]). Subgroup analysis revealed that all subgroup types in our analysis, including different races, sample types, diagnostic algorithms, number of spectra, instrument types, and laser wavelengths, turned out to have a sensitivity and specificity greater than 0.9. Significant heterogeneity was found between studies. Deeks’ funnel plot demonstrated that publication bias was acceptable. This meta-analysis suggests that Raman spectroscopy may be an effective and accurate tool to differentiate breast cancer from normal breast tissue, which will help us diagnose and treat breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71(3):209–249. https://doi.org/10.3322/caac.21660

  2. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225(1):165–75. https://doi.org/10.1148/radiol.2251011667.

    Article  PubMed  Google Scholar 

  3. Berquin A. Douleur chronique : quelques repères pour mieux comprendre et agir. Ann Phys Rehab Med. 2013;56:https://doi.org/10.1016/j.rehab.2013.07.210

  4. Sattlecker M, Bessant C, Smith J, Stone N. Investigation of support vector machines and Raman spectroscopy for lymph node diagnostics. Analyst. 2010;135(5):895–901. https://doi.org/10.1039/b920229c.

    Article  CAS  PubMed  Google Scholar 

  5. Sathyavathi R, Saha A, Soares JS, Spegazzini N, McGee S, Rao Dasari R, Fitzmaurice M, Barman I. Raman spectroscopic sensing of carbonate intercalation in breast microcalcifications at stereotactic biopsy. Sci Rep. 2015;5:9907. https://doi.org/10.1038/srep09907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng C, Jia HY, Liu LY, Wang Q, Jiang HC, Teng LS, Geng CZ, Jin F, Tang LL, Zhang JG, Wang X, Wang S, Alejandro FE, Wang F, Yu LX, Zhou F, Xiang YJ, Huang SY, Fu QY, Zhang Q, Gao Z, Ma ZB, Li L, Fan ZM, Yu ZG. Molecular fingerprint of precancerous lesions in breast atypical hyperplasia. J Int Med Res. 2020;48(6):300060520931616. https://doi.org/10.1177/0300060520931616.

    Article  CAS  PubMed  Google Scholar 

  7. Kopec M, Imiela A, Abramczyk H. Monitoring glycosylation metabolism in brain and breast cancer by Raman imaging. Sci Rep. 2019;9(1):166. https://doi.org/10.1038/s41598-018-36622-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kopeć M, Abramczyk H. Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;198:338–45. https://doi.org/10.1016/j.saa.2018.02.058.

    Article  CAS  Google Scholar 

  9. Jin H, Lin T, Han P, Yao Y, Zheng D, Hao J, Hu Y, Zeng R. Efficacy of Raman spectroscopy in the diagnosis of bladder cancer: a systematic review and meta-analysis. Medicine. 2019;98(47): e18066. https://doi.org/10.1097/md.0000000000018066.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jin H, He X, Zhou H, Zhang M, Tang Q, Lin L, Hao J, Zeng R. Efficacy of Raman spectroscopy in the diagnosis of kidney cancer: a systematic review and meta-analysis. Medicine. 2020;99(27): e20933. https://doi.org/10.1097/md.0000000000020933.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Fan Y, Song Y, Xu J. Accuracy of Raman spectroscopy for differentiating skin cancer from normal tissue. Medicine. 2018;97(34): e12022. https://doi.org/10.1097/md.0000000000012022.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016;7(1):15. https://doi.org/10.1186/s13167-016-0065-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee S, Kim JK. Label-free Raman spectroscopic techniques with morphological and optical characterization for cancer cell analysis. Adv Exp Med Biol. 2021;1310:385–99. https://doi.org/10.1007/978-981-33-6064-8_14.

    Article  CAS  PubMed  Google Scholar 

  14. Blanco-Formoso M, Alvarez-Puebla RA. Cancer diagnosis through SERS and other related techniques. Int J Mol Sci. 2020;21 (6). https://doi.org/10.3390/ijms21062253

  15. Ma N, Zhang XY, Fan W, Guo S, Zhang Y, Liu Y, Chen L, Jung YM. SERS study of Ag/FeS/4-MBA interface based on the SPR effect. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;219:147–53. https://doi.org/10.1016/j.saa.2019.04.005.

    Article  CAS  Google Scholar 

  16. Gao N, Wang Q, Tang J, Yao S, Li H, Yue X, Fu J, Zhong F, Wang T, Wang J. Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer. Anal Bioanal Chem. 2021;413(19):4775–84. https://doi.org/10.1007/s00216-021-03431-3.

    Article  CAS  PubMed  Google Scholar 

  17. Cennamo G, Montorio D, Morra VB, Criscuolo C, Lanzillo R, Salvatore E, Camerlingo C, Lisitskiy M, Delfino I, Portaccio M, Lepore M. Surface-enhanced Raman spectroscopy of tears: toward a diagnostic tool for neurodegenerative disease identification. J Biomed Opt. 2020;25(8):1–12. https://doi.org/10.1117/1.Jbo.25.8.087002.

    Article  PubMed  Google Scholar 

  18. Markina NE, Zakharevich AM, Markin AV. Determination of methotrexate in spiked human urine using SERS-active sorbent. Anal Bioanal Chem. 2020;412(28):7757–66. https://doi.org/10.1007/s00216-020-02932-x.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev. 2017;117(12):7910–63. https://doi.org/10.1021/acs.chemrev.7b00027.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng C, Liang L, Xu S, Zhang H, Hu C, Bi L, Fan Z, Han B, Xu W. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Anal Bioanal Chem. 2014;406(22):5425–32. https://doi.org/10.1007/s00216-014-7967-5.

    Article  CAS  PubMed  Google Scholar 

  21. Shang LW, Ma DY, Fu JJ, Lu YF, Zhao Y, Xu XY, Yin JH. Fluorescence imaging and Raman spectroscopy applied for the accurate diagnosis of breast cancer with deep learning algorithms. Biomed Opt Express. 2020;11(7):3673–83. https://doi.org/10.1364/boe.394772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schueler S, Schuetz GM, Dewey M. The revised QUADAS-2 tool. Annals of internal medicine. 2012;156 (4):323; author reply 323–324. https://doi.org/10.7326/0003-4819-156-4-201202210-00018

  23. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med. 1993;12(14):1293–316. https://doi.org/10.1002/sim.4780121403.

    Article  CAS  PubMed  Google Scholar 

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses BMJ (Clinical research ed). 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  Google Scholar 

  25. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  Google Scholar 

  26. Haka AS, Volynskaya Z, Gardecki JA, Nazemi J, Shenk R, Wang N, Dasari RR, Fitzmaurice M, Feld MS. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Opt. 2009;14(5): 054023. https://doi.org/10.1117/1.3247154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han B, Du Y, Fu T, Fan Z, Xu S, Hu C, Bi L, Gao T, Zhang H, Xu W. Differences and relationships between normal and atypical ductal hyperplasia, ductal carcinoma in situ, and invasive ductal carcinoma tissues in the breast based on raman spectroscopy. Appl Spectrosc. 2017;71(2):300–7. https://doi.org/10.1177/0003702816681009.

    Article  CAS  PubMed  Google Scholar 

  28. Lazaro-Pacheco D, Shaaban AM, Titiloye NA, Rehman S, Rehman IU. Elucidating the chemical and structural composition of breast cancer using Raman micro-spectroscopy. EXCLI J. 2021;20:1118–32. https://doi.org/10.17179/excli2021-3962.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ma D, Shang L, Tang J, Bao Y, Fu J, Yin J. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;256: 119732. https://doi.org/10.1016/j.saa.2021.119732.

    Article  CAS  Google Scholar 

  30. Lin D, Wang Y, Wang T, Zhu Y, Lin X, Lin Y, Feng S. Metabolite profiling of human blood by surface-enhanced Raman spectroscopy for surgery assessment and tumor screening in breast cancer. Anal Bioanal Chem. 2020;412(7):1611–8. https://doi.org/10.1007/s00216-020-02391-4.

    Article  CAS  PubMed  Google Scholar 

  31. Nargis HF, Nawaz H, Ditta A, Mahmood T, Majeed MI, Rashid N, Muddassar M, Bhatti HN, Saleem M, Jilani K, Bonnier F, Byrne HJ. Raman spectroscopy of blood plasma samples from breast cancer patients at different stages. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;222: 117210. https://doi.org/10.1016/j.saa.2019.117210.

    Article  CAS  Google Scholar 

  32. Nargis HF, Nawaz H, Bhatti HN, Jilani K, Saleem M. Comparison of surface enhanced Raman spectroscopy and Raman spectroscopy for the detection of breast cancer based on serum samples. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;246: 119034. https://doi.org/10.1016/j.saa.2020.119034.

    Article  CAS  Google Scholar 

  33. Zhang H, Wang X, Ding R, Shen L, Gao P, Xu H, Xiu C, Zhang H, Song D, Han B. Characterization and imaging of surgical specimens of invasive breast cancer and normal breast tissues with the application of Raman spectral mapping: a feasibility study and comparison with randomized single-point detection method. Oncol Lett. 2020;20(3):2969–76. https://doi.org/10.3892/ol.2020.11804.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Iwasaki K, Araki A, Krishna CM, Maruyama R, Yamamoto T, Noothalapati H. Identification of molecular basis for objective discrimination of breast cancer cells (MCF-7) from normal human mammary epithelial cells by Raman microspectroscopy and multivariate curve resolution analysis. Int J Mol Sci. 2021;22 (2). https://doi.org/10.3390/ijms22020800

  35. Bilal M, Bilal M, Tabassum S, Saleem M, Mahmood H, Sarwar U, Bangush H, Munir F, Aslam Zia M, Ahmed M, Shahzada S, Ullah Khan E. Optical screening of female breast cancer from whole blood using Raman spectroscopy. Appl Spectrosc. 2017;71(5):1004–13. https://doi.org/10.1177/0003702816667516.

    Article  CAS  PubMed  Google Scholar 

  36. Li Q, Li W, Zhang J, Xu Z. An improved k-nearest neighbour method to diagnose breast cancer. Analyst. 2018;143(12):2807–11. https://doi.org/10.1039/c8an00189h.

    Article  CAS  PubMed  Google Scholar 

  37. Koya SK, Brusatori M, Yurgelevic S, Huang C, Werner CW, Kast RE, Shanley J, Sherman M, Honn KV, Maddipati KR, Auner GW. Accurate identification of breast cancer margins in microenvironments of ex-vivo basal and luminal breast cancer tissues using Raman spectroscopy. Prostaglandins Other Lipid Mediat. 2020;151: 106475. https://doi.org/10.1016/j.prostaglandins.2020.106475.

    Article  CAS  PubMed  Google Scholar 

  38. Feng S, Huang S, Lin D, Chen G, Xu Y, Li Y, Huang Z, Pan J, Chen R, Zeng H. Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. Int J Nanomed. 2015;10:537–47. https://doi.org/10.2147/ijn.S71811.

    Article  Google Scholar 

  39. Majumder SK, Keller MD, Boulos FI, Kelley MC, Mahadevan-Jansen A. Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination. J Biomed Opt. 2008;13(5): 054009. https://doi.org/10.1117/1.2975962.

    Article  PubMed  Google Scholar 

  40. Kim S, Kim W, Bang A, Song JY, Shin JH, Choi S. Label-free breast cancer detection using fiber probe-based Raman spectrochemical biomarker-dominated profiles extracted from a mixture analysis algorithm. Analytical methods : advancing methods and applications. 2021;13(29):3249–55. https://doi.org/10.1039/d1ay00491c.

    Article  CAS  Google Scholar 

  41. Lin Y, Gao J, Tang S, Zhao X, Zheng M, Gong W, Xie S, Gao S, Yu Y, Lin J. Label-free diagnosis of breast cancer based on serum protein purification assisted surface-enhanced Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;263: 120234. https://doi.org/10.1016/j.saa.2021.120234.

    Article  CAS  Google Scholar 

  42. Giamougiannis P, Silva RVO, Freitas DLD, Lima KMG, Anagnostopoulos A, Angelopoulos G, Naik R, Wood NJ, Martin-Hirsch PL, Martin FL. Raman spectroscopy of blood and urine liquid biopsies for ovarian cancer diagnosis: identification of chemotherapy effects. J Biophotonics. 2021;14(11): e202100195. https://doi.org/10.1002/jbio.202100195.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao J, Zeng H, Kalia S, Lui H. Using Raman spectroscopy to detect and diagnose skin cancer in vivo. Dermatol Clin. 2017;35(4):495–504. https://doi.org/10.1016/j.det.2017.06.010.

    Article  CAS  PubMed  Google Scholar 

  44. Lyng FM, Traynor D, Ramos IR, Bonnier F, Byrne HJ. Raman spectroscopy for screening and diagnosis of cervical cancer. Anal Bioanal Chem. 2015;407(27):8279–89. https://doi.org/10.1007/s00216-015-8946-1.

    Article  CAS  PubMed  Google Scholar 

  45. Downes A, Elfick A. Raman spectroscopy and related techniques in biomedicine. Sensors (Basel, Switzerland). 2010;10(3):1871–89. https://doi.org/10.3390/s100301871.

    Article  Google Scholar 

  46. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2007;2(2):219–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wellings SR, Jensen HM. On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst. 1973;50(5):1111–8. https://doi.org/10.1093/jnci/50.5.1111.

    Article  CAS  PubMed  Google Scholar 

  48. Kader T, Hill P, Rakha EA, Campbell IG, Gorringe KL. Atypical ductal hyperplasia: update on diagnosis, management, and molecular landscape. Breast cancer research : BCR. 2018;20(1):39. https://doi.org/10.1186/s13058-018-0967-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lizio MG, Liao Z, Shipp DW, Boitor R, Mihai R, Sharp JS, Russell M, Khout H, Rakha EA, Notingher I. Combined total internal reflection AF spectral-imaging and Raman spectroscopy for fast assessment of surgical margins during breast cancer surgery. Biomed Opt Express. 2021;12(2):940–54. https://doi.org/10.1364/boe.411648.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wen Y, Truong VX, Li M. Real-time intraoperative surface-enhanced Raman spectroscopy-guided thermosurgical eradication of residual microtumors in orthotopic breast cancer. Nano Lett. 2021;21(7):3066–74. https://doi.org/10.1021/acs.nanolett.1c00204.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our thanks to Prof. Yong Yu from the Department of Ultrasound in Shandong Provincial Hospital who was involved in the revision of our manuscript.

Funding

The work was supported by the Natural Science Foundation of Shandong Province under Grant [ZR2021QH047] and the Clinical Science and Technology Innovation Development Program of Jinan (grant number 202134036).

Author information

Authors and Affiliations

Authors

Contributions

Mei-Huan Wang and Qian Wang conceived the idea for the article. Mei-Huan Wang and Xiao Liu conducted data collection and analysis. Qian Wang managed and drafted the manuscript. Hua-Wei Zhang approved the final version of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Qian Wang or Hua-Wei Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent for publication of their clinical details and clinical images was obtained from the patient.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MH., Liu, X., Wang, Q. et al. Diagnosis accuracy of Raman spectroscopy in the diagnosis of breast cancer: a meta-analysis. Anal Bioanal Chem 414, 7911–7922 (2022). https://doi.org/10.1007/s00216-022-04326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04326-7

Keywords

Navigation