Skip to main content
Log in

Biotin-labelled peptidomimetic for competitive time-resolved fluoroimmunoassay of benzothiostrobin

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In recent years, more and more functional peptide ligands have been identified from phage display libraries and served the immunoassay of small molecules. After the identification, the phage particle instead limits further application of peptide ligands, so it is of great significance to explore the peptide ligand as an independent detection reagent. In this work, the identified peptidomimetic of benzothiostrobin was synthesized and labelled with biotin, which was combined with Eu3+-labelled streptavidin to develop the peptide-based time-resolved fluoroimmunoassay (P-TRFIA). Under the optimal conditions, the half-maximum inhibitory concentration (IC50) of proposed P-TRFIA is 3.63 ng mL−1, which is similar to the TRFIA using phage-borne peptidomimetic and Eu3+-labelled anti-phage antibody (IC50: 4.55 ng mL−1), also more sensitive than previously reported immunoassays for benzothiostrobin. In addition, the proposed P-TRFIA shows excellent specificity and accuracy for analysis of spiked samples, and its detection results shows good consistency with high-performance liquid chromatography for the detection of environment and agro-products samples with unknown benzothiostrobin concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao FC, Shi RR, Liu RX, Tian Y, Yang ZY. Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: a mini-review. Food Chem. 2020;339:128084. https://doi.org/10.1016/j.foodchem.2020.128084.

    Article  CAS  PubMed  Google Scholar 

  2. Peltomaa R, Fikacek S, Benito-Pena E, Barderas R, Head T, Deo S, Daunert S, Moreno-Bondi MC. Bioluminescent detection of zearalenone using recombinant peptidomimetic Gaussia luciferase fusion protein. Microchim Acta. 2020;187:547. https://doi.org/10.1007/s00604-020-04538-7.

    Article  CAS  Google Scholar 

  3. Zou WT, Shi RR, Wang GQ, Zhao ZL, Zhao FC, Yang ZY. Rapid and sensitive noncompetitive immunoassay for detection of aflatoxin B1 based on anti-immune complex peptide. Food Chem. 2020;393:133317. https://doi.org/10.1016/j.foodchem.2022.133317.

    Article  CAS  Google Scholar 

  4. Wang J, Liu ZP, Li GQ, Li J, Kim HJ, Shelver WL, Li QX, Xu T. Simultaneous development of both competitive and noncompetitive immunoassays for 2,2 ’,4,4 ’-tetrabromodiphenyl ether using phage-displayed peptides. Anal Bioanal Chem. 2013;405:9579–83. https://doi.org/10.1007/s00216-013-7364-5.

    Article  CAS  PubMed  Google Scholar 

  5. Wang YR, Wang H, Li PW, Zhang Q, Kim HJ, Gee SJ, Hammock BD. Phage-displayed peptide that mimics aflatoxins and its application in immunoassay. J Agric Food Chem. 2013;61:2426–33. https://doi.org/10.1021/jf4004048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding Y, Hua XD, Chen H, Liu FQ, Gonzalez-Sapien G, Wang MH. Recombinant peptidomimetic-nano luciferase tracers for sensitive single-step immunodetection of small molecules. Anal Chem. 2018;90:2230–7. https://doi.org/10.1021/acs.analchem.7b04601.

    Article  CAS  PubMed  Google Scholar 

  7. Li K, Chen Y, Li SQ, Huong GN, Niu ZW, You SJ, Mello CM, Lu XB, Wang QA. Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug Chem. 2010;21:1369–77. https://doi.org/10.1021/bc900405q.

    Article  CAS  PubMed  Google Scholar 

  8. Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Pena E, Moreno-Bondi MC. Homogeneous quenching immunoassay for fumonisin B-1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein. ACS Nano. 2018;12:11333–42. https://doi.org/10.1021/acsnano.8b06094.

    Article  CAS  PubMed  Google Scholar 

  9. Lassabe G, Rossotti M, Gonzalez-Techera A, Gonzalez-Sapienza G. Shiga-like toxin B subunit of Escherichia coli as scaffold for high-avidity display of anti-immunocomplex peptides. Anal Chem. 2014;86:5541–6. https://doi.org/10.1021/ac500926f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan JX, Hu WJ, You KH, Ma ZE, Xu Y, Li YP, He QH. Biosynthetic mycotoxin conjugate mimetics-mediated green strategy for multiplex mycotoxin immunochromatographic assay. J Agric Food Chem. 2020;68:2193–200. https://doi.org/10.1021/acs.jafc.9b06383.

    Article  CAS  PubMed  Google Scholar 

  11. Peltomaa R, Farka Z, Mickert MJ, Brandmeier JC, Pastucha M, Hlavacek A, Martinez-Orts M, Canales A, Skladal P, Benito-Pena E, Moreno-Bondi MC, Gorris HH. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens Bioelectron. 2020;170:112683. https://doi.org/10.1016/j.bios.2020.112683.

    Article  CAS  PubMed  Google Scholar 

  12. Chen YJ, Zhang SP, Hong ZS, Lin YY, Dai H. A mimotope peptide-based dual-signal readout competitive enzyme-linked immunoassay for non-toxic detection of zearalenone. J Mater Chem B. 2019;7:6962–80. https://doi.org/10.1039/c9tb01167f.

    Article  CAS  Google Scholar 

  13. Lassabe G, Kramer K, Hammock BD, Gonzalez-Sapienza G, Gonzalez-Techera A. Noncompetitive homogeneous detection of small molecules using synthetic nanopeptamer-based luminescent oxygen channeling. Anal Chem. 2018;90:6187–92. https://doi.org/10.1021/acs.analchem.8b00657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukhtar H, Ma L, Pang Q, Zhou YX, Wang XH, Xu T, Hammock BD, Wang J. Cyclic peptide: a safe and effective alternative to synthetic aflatoxin B-1-competitive antigens. Anal Bioanal Chem. 2019;411:3881–90. https://doi.org/10.1007/s00216-019-01862-7.

    Article  CAS  PubMed  Google Scholar 

  15. Hakeem DA, Su SS, Mo ZR, Wen HL. Upconversion luminescent nanomaterials: a promising new platform for food safety analysis. Crit Rev Food Sci. 2021. https://doi.org/10.1080/10408398.2021.1937039.

    Article  Google Scholar 

  16. Yang HY, He QY, Eremin SA, Pan JK, Zou YK, Cui XP, Zhao SQ. Fluorescence polarization immunoassay for rapid determination of dehydroepiandrosterone in human urine. Anal Bioanal Chem. 2021;413:4459–69. https://doi.org/10.1007/s00216-021-03403-7.

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Gonzalez M, de la Escosura-Muniz A, Fernandez-Arguelles MT, Alonso FJG, Costa-Fernandez JM. Quantum dot bioconjugates for diagnostic applications. Topics Curr Chem. 2020;378:35. https://doi.org/10.1007/s41061-020-0296-6.

    Article  CAS  Google Scholar 

  18. Hagan AK, Zuchner T. Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem. 2011;400:2847–64. https://doi.org/10.1007/s00216-011-5047-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun JD, Wang LZ, Shao JD, Yang DD, Fu XR, Sun XL. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal Bioanal Chem. 2021;413:6489–502. https://doi.org/10.1007/s00216-021-03612-0.

    Article  CAS  PubMed  Google Scholar 

  20. Yan TT, Zhang ZW, Zhang Q, Tang XQ, Wang D, Hu XF, Zhang W, Chen XM, Li PW. Simultaneous determination for A. flavus-metabolizing mycotoxins by time-resolved fluorescent microbead or gold-enabling test strip in agricultural products based on monoclonal antibodies. Microchim Acta. 2020;187:653.

    Article  CAS  Google Scholar 

  21. Xu CY, Hou YP, Wang JX, Yang GF, Liang XY, Zhou MG. Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum. Pestic Biochem Phys. 2014;115:32–8. https://doi.org/10.1016/j.pestbp.2014.08.001.

    Article  CAS  Google Scholar 

  22. Kolosova A, Maximova K, Eremin SA, Zherdev AV, Mercader JV, Abad-Fuentes A, Dzantiev BB. Fluorescence polarisation immunoassays for strobilurin fungicides kresoxim-methyl, trifloxystrobin and picoxystrobin. Talanta. 2017;162:495–504. https://doi.org/10.1016/j.talanta.2016.10.063.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan YL, Hua XD, Li M, Yin W, Shi HY, Wang MH. Development of a sensitive indirect competitive enzyme-linked immunosorbent assay based on the monoclonal antibody for the detection of benzothiostrobin residue. RSC Adv. 2014;4:24406–11. https://doi.org/10.1039/c4ra01845a.

    Article  CAS  Google Scholar 

  24. Chen H, You TY, Zong LF, Mukhametova LI, Zherdev DO, Eremin SA, Ding Y, Wang MH, Hua XD. Competitive and noncompetitive fluorescence polarization immunoassays for the detection of benzothiostrobin using FITC-labeled dendrimer-like peptides. Food Chem. 2021;360:130020. https://doi.org/10.1016/j.foodchem.2021.130020.

    Article  CAS  PubMed  Google Scholar 

  25. Liang C, Jin R, Gui W, Zhu G. Enzyme-linked immunosorbent assay based on a monoclonal antibody for the detection of the insecticide triazophos: assay optimization and application to environmental samples. Environ Sci Technol. 2007;41:6783–8. https://doi.org/10.1021/es070828m.

    Article  CAS  PubMed  Google Scholar 

  26. Wu JK, Ma JW, Wang H, Qin DM, An L, Ma Y, Zheng ZT, Hua XD, Wang TL, Wu XJ. Rapid and visual detection of benzothiostrobin residue in strawberry using quantum dot-based lateral flow test strip. Sensor Actuat B-Chem. 2019;283:222–9. https://doi.org/10.1016/j.snb.2018.11.137.

    Article  CAS  Google Scholar 

  27. Chen H, Yang Q, Ding Y, Vasylieva N, Bever CS, Hua XD, Wang MH, Hammock BD. Competitive and noncompetitive immunoassays for the detection of benzothiostrobin using magnetic nanoparticles and fluorescein isothiocyanate-labelled peptides. Anal Bioanal Chem. 2019;411:527–35. https://doi.org/10.1007/s00216-018-1478-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant 31972311), Fundamental Research Funds for the Central Universities (Grant KYQN2022051), and the Science and Technology Innovation Team of Henan Academy of Agricultural Sciences (2022TD20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xujin Wu or Xiude Hua.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 288 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Chen, H., Zong, L. et al. Biotin-labelled peptidomimetic for competitive time-resolved fluoroimmunoassay of benzothiostrobin. Anal Bioanal Chem 414, 7143–7151 (2022). https://doi.org/10.1007/s00216-022-04288-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04288-w

Keywords

Navigation