Skip to main content

Advertisement

Log in

The fluorescent aptasensor based on CRISPR-Cas12a combined with TdT for highly sensitive detection of cocaine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ultrasensitive and specific detection of cocaine is of great significance for monitoring cocaine abuse. Herein, a fluorescent aptasensor via coupling CRISPR-Cas12a, with magnetic nanoparticles (MNPs), split-aptamer, and terminal deoxynucleotidyl transferase (TdT), was developed for the detection of cocaine. In short, the complete cocaine aptamer is split into two parts, one is modified on magnetic nanoparticles (MNPs) and the other is free. The presence of cocaine will mediate the binding of these two segments. Then TdT will mediate the extension to form an ultra-long sequence that can bind with multiple CRISPR-Cas12a resulting in the trans-cleavage activity of CRISPR-Cas12a being triggered. Thence, the DNA reporter which is bi-labeled with fluorophore and quencher is cleaved resulting in the generation of a fluorescence signal. The developed fluorescent aptasensor realizes the detection of cocaine with excellent sensitivity and specificity. The detection limit is low down to 33 pM, and the linear range is from 330 to 1.65 × 105 pM. Most importantly, this fluorescent aptasensor can be successfully applied to the determination of cocaine in human plasma samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryan SA. Cocaine use in adolescents and young adults. Pediatr Clin North Am. 2019;66(6):1135–47.

    Article  Google Scholar 

  2. Thornton C, Grad E, Yaka R. The role of mitochondria in cocaine addiction. Biochem J. 2021;478(4):749–64.

    Article  CAS  Google Scholar 

  3. Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin. Biosens Bioelectron. 2016;80:532–7.

    Article  CAS  Google Scholar 

  4. Kawa AB, Allain F, Robinson TE, Samaha AN. The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models. Psychopharmacology. 2019;236(4):1145–57.

    Article  CAS  Google Scholar 

  5. Mandrioli R, Mercolini L, Protti M. Blood and plasma volumetric absorptive microsampling (VAMS) coupled to LC-MS/ms for the forensic assessment of cocaine consumption. Molecules. 2020;25(5):1046.

    Article  CAS  Google Scholar 

  6. Liu CG, Wang Y, Liu P, Yao QL, Zhou YY, Li CF, et al. Aptamer-T cell targeted therapy for tumor treatment using sugar metabolism and click chemistry. ACS Chem Biol. 2020;15(6):1554–65.

    Article  CAS  Google Scholar 

  7. Perret G, Boschetti E. Aptamer-based affinity chromatography for protein extraction and purification. Adv Biochem Eng Biotechnol. 2020;174:93–139.

    CAS  PubMed  Google Scholar 

  8. Zhang F, Liu J. Interactions of the cocaine and quinine aptamer with gold nanoparticles under the dilute biosensor and concentrated NMR conditions. Langmuir. 2021;37(40):11939–47.

    Article  CAS  Google Scholar 

  9. Wu Z, Zhou H, Han Q, Lin X, Han D, Li X. A cost-effective fluorescence biosensor for cocaine based on a “mix-and-detect” strategy. Analyst. 2020;145(13):4664–70.

    Article  CAS  Google Scholar 

  10. Su F, Zhang S, Ji H, Zhao H, Tian JY, Liu CS, et al. Two-dimensional zirconium-based metal-organic framework nanosheet composites embedded with Au nanoclusters: a highly sensitive electrochemical aptasensor toward detecting cocaine. ACS Sens. 2017;2(7):998–1005.

    Article  CAS  Google Scholar 

  11. Oroval M, Coronado-Puchau M, Langer J, Sanz-Ortiz MN, Ribes Á, Aznar E, et al. Surface enhanced raman scattering and gated materials for sensing applications: the ultrasensitive detection of mycoplasma and cocaine. Chemistry. 2016;22(38):13488–95.

    Article  CAS  Google Scholar 

  12. Wang L, Musile G, McCord BR. An aptamer-based paper microfluidic device for the colorimetric determination of cocaine. Electrophoresis. 2018;39(3):470–5.

    Article  CAS  Google Scholar 

  13. Chen Z, Tan Y, Xu K, et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens Bioelectron. 2016;75:8–14.

    Article  Google Scholar 

  14. Qian W, Miao Z, Zhang XJ, Yang XT, Tang YY, Tang YY, et al. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim Acta. 2020;187(7):407.

    Article  CAS  Google Scholar 

  15. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.

    Article  CAS  Google Scholar 

  16. Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci. 2019;24(12):1102–25.

    Article  CAS  Google Scholar 

  17. Liang M, Li Z, Wang W, Liu J, Liu L, Zhu G, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun. 2019;10(1):3672.

    Article  Google Scholar 

  18. Yu P, Yang T, Zhang D, Xu L, Cheng X, Ding S, et al. An all-in-one telomerase assay based on CRISPR-Cas12a trans-cleavage while telomere synthesis. Anal Chim Acta. 2021;1159:338404.

    Article  CAS  Google Scholar 

  19. Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 2018;28(4):491–3.

    Article  CAS  Google Scholar 

  20. Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, et al. Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J Am Chem Soc. 2020;142(1):207–13.

    Article  CAS  Google Scholar 

  21. Zhao Q, Piao J, Peng W, Wang Y, Zhang B, Gong X, et al. Simple and sensitive quantification of microRNAs via PS@Au microspheres-based DNA probes and DSN-assisted signal amplification platform. ACS Appl Mater Interfaces. 2018;10(4):3324–32.

    Article  CAS  Google Scholar 

  22. Yu W, Li J, Zuo C, Tao Y, Bai S, Li J, et al. Specific discrimination and universal signal amplification for RNA detection by coupling toehold exchange with RCA through nucleolytic conversion of a structure-switched hairpin probe. Anal Chim Acta. 2019;1068:96–103.

    Article  CAS  Google Scholar 

  23. Lei S, Liu Z, Xu L, Zou L, Li G, Ye B. A “signal-on” electrochemical biosensor based on DNAzyme-driven bipedal DNA walkers and TdT-mediated cascade signal amplification strategy. Anal Chim Acta. 2020;1100:40–6.

    Article  CAS  Google Scholar 

  24. Jiang J, Lin X, Ding D, Diao G. Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe3O4@SiO2@β-CD nanocomposites. Biosens Bioelectron. 2018;114:37–43.

    Article  CAS  Google Scholar 

  25. Zou Y, Zhang H, Wang Z, Liu Q, Liu Y. A novel ECL method for histone acetyltransferases (HATs) activity analysis by integrating HCR signal amplification and ECL silver clusters. Talanta. 2019;198:39–44.

    Article  CAS  Google Scholar 

  26. Li X, Du Z, Lin S, Tian J, Tian H, Xu W. ExoIII and TdT dependent isothermal amplification (ETDA) colorimetric biosensor for ultra-sensitive detection of Hg2. Food Chem. 2020;316:126303.

    Article  CAS  Google Scholar 

  27. Chen J, Zeng L. Enzyme-amplified electronic logic gates based on split/intact aptamers. Biosens Bioelectron. 2013;42:93–9.

    Article  Google Scholar 

  28. Wang Q, Liu J, Zeng J, Yang Z, Ran F, Wu L, et al. Determination of miRNA derived from exosomes of prostate cancer via toehold-aided cyclic amplification combined with HRP enzyme catalysis and magnetic nanoparticles. Anal Biochem. 2021;630:114336.

    Article  CAS  Google Scholar 

  29. Can F, Ökten HE, Ergön-Can T, Ergenekon P, Özkan M, Erhan E. Thermodynamically designed target-specific DNA probe as an electrochemical hybridization biosensor. Bioelectrochemistry. 2020;135:107553.

    Article  CAS  Google Scholar 

  30. Wang J, Hou J, Zhang H, Tian Y, Jiang L. Single nanochannel-aptamer-based biosensor for ultrasensitive and selective cocaine detection. ACS Appl Mater Interfaces. 2018;10(2):2033–9.

    Article  CAS  Google Scholar 

  31. Chen Z, Lu M. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification. Talanta. 2016;160:444–8.

    Article  CAS  Google Scholar 

  32. Emrani AS, Danesh NM, Ramezani M, Taghdisi SM, Abnous K. A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron. 2016;79:288–93.

    Article  CAS  Google Scholar 

  33. Adegoke O, Pereira-Barros MA, Zolotovskaya S, Abdolvand A, Daeid NN. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probe. Mikrochim Acta. 2020;187(2):104.

    Article  CAS  Google Scholar 

  34. Abnous K, Danesh NM, Ramezani M, Taghdisi SM, Emrani AS. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles. Anal Chim Acta. 2018;1020:110–5.

    Article  CAS  Google Scholar 

  35. Chen Z, Tan Y, Xu K, Zhang L, Qiu B, Guo L, et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor forcocaine determination. Biosens Bioelectron. 2016;75:8–14.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Sanming Project of Medicine in Shenzhen (Grant No. SZZYSM202106004), Baoan District Medical and Health Basic Research Project (Grant No. 2021JD143), the Science and Technology Key Program of Shiyan (Grant No. 2021Y76), Science and Technology Key Program of Shiyan (Grant No. 21Y48), and Foundation of Health Commission of Hubei Province (Grant Nos. WJ2021F052, WJ2021M062, and WJ2021M063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linhai Wang or Qinhua Chen.

Ethics declarations

Ethics approval

Informed consent was obtained from all participants in the clinical trial and the protocols were approved by the Shenzhen Baoan Authentic TCM Therapy Hospital’s Ethics Committee.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 374 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Liu, J., Chen, G. et al. The fluorescent aptasensor based on CRISPR-Cas12a combined with TdT for highly sensitive detection of cocaine. Anal Bioanal Chem 414, 7291–7297 (2022). https://doi.org/10.1007/s00216-022-04280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04280-4

Keywords

Navigation