Skip to main content
Log in

Concentration and composition of the protein corona as a function of incubation time and serum concentration: an automated approach to the protein corona

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles in contact with proteins form a “corona” of proteins adsorbed on the nanoparticle surface. Subsequent biological responses are then mediated by the adsorbed proteins rather than the bare nanoparticles. The use of nanoparticles as nanomedicines and biosensors would be greatly improved if researchers were able to predict which specific proteins will adsorb on a nanoparticle surface. We use a recently developed automated workflow with a liquid handling robot and low-cost proteomics to determine the concentration and composition of the protein corona formed on carboxylate-modified iron oxide nanoparticles (200 nm) as a function of incubation time and serum concentration. We measure the concentration of the resulting protein corona with a colorimetric assay and the composition of the corona with proteomics, reporting both abundance and enrichment relative to the fetal bovine serum (FBS) proteins used to form the corona. Incubation time was found to be an important parameter for corona concentration and composition at high (100% FBS) incubation concentrations, with only a slight effect at low (10%) FBS concentrations. In addition to these findings, we describe two methodological advances to help reduce the cost associated with protein corona experiments. We have automated the digest step necessary for proteomics and measured the variability between triplicate samples at each stage of the proteomics experiments. Overall, these results demonstrate the importance of understanding the multiple parameters that influence corona formation, provide new tools for corona characterization, and advance bioanalytical research in nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47:2651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41:2780–99.

    Article  CAS  PubMed  Google Scholar 

  3. Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–86.

    Article  CAS  PubMed  Google Scholar 

  4. Nienhaus K, Nienhaus GU. Towards a molecular-level understanding of the protein corona around nanoparticles — recent advances and persisting challenges. Curr Opin Biomed Eng. 2019;10:11–22.

    Article  Google Scholar 

  5. Kobos L, Shannahan J. Biocorona-induced modifications in engineered nanomaterial-cellular interactions impacting biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12:e1608.

    Article  PubMed  Google Scholar 

  6. Tomak A, Cesmeli S, Hanoglu BD, Winkler D, Oksel KC. Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity. Nanotoxicology. 2021;15:1331–57.

    Article  CAS  PubMed  Google Scholar 

  7. Abarca-Cabrera L, Fraga-Garcia P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021;25:1–18.

    Article  Google Scholar 

  8. Cai R, Chen C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv Mater. 2019;31:e1805740.

    Article  PubMed  Google Scholar 

  9. Payne CK. A protein corona primer for physical chemists. J Chem Phys. 2019;151:130901.

    Article  PubMed  Google Scholar 

  10. Docter D, Strieth S, Westmeier D, Hayden O, Gao M, Knauer SK, et al. No king without a crown — impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine. 2015;10:503–19.

    Article  CAS  PubMed  Google Scholar 

  11. Frtus A, Smolkova B, Uzhytchak M, Lunova M, Jirsa M, Kubinova S, et al. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: a road from failure to success in clinical applications. J Control Release. 2020;328:59–77.

    Article  CAS  PubMed  Google Scholar 

  12. Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hamad-Schifferli K. Exploiting the novel properties of protein coronas: emerging applications in nanomedicine. Nanomedicine. 2015;10:1663–74.

    Article  CAS  PubMed  Google Scholar 

  14. Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, et al. Environmental dimensions of the protein corona. Nat Nanotechnol. 2021;16:617–29.

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotechnol. 2022;17:347–60.

    Article  CAS  PubMed  Google Scholar 

  16. Deng D, Li Y, Xue J, Wang J, Ai G, Li X, et al. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen. Int J Nanomedicine. 2015;10:3231–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21.

    Article  CAS  PubMed  Google Scholar 

  18. Carrillo-Carrion C, Carril M, Parak WJ. Techniques for the experimental investigation of the protein corona. Curr Opin Biotechnol. 2017;46:106–13.

    Article  CAS  PubMed  Google Scholar 

  19. Jayaram DT, Pustulka SM, Mannino RG, Lam WA, Payne CK. Protein corona in response to flow: effect on protein concentration and structure. Biophys J. 2018;115:209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pisani C, Gaillard JC, Dorandeu C, Charnay C, Guari Y, Chopineau J, et al. Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles. Nanoscale. 2017;9:5769–72.

    Article  CAS  PubMed  Google Scholar 

  21. Hoang KNL, Wheeler KE, Murphy CJ. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles. Anal Chem. 2022;94:4737–46.

    Article  CAS  PubMed  Google Scholar 

  22. Poulsen KM, Pho T, Champion JA, Payne CK. Automation and low-cost proteomics for characterization of the protein corona: experimental methods for big data. Anal Bioanal Chem. 2020;412:6543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zarei M, Aalaie J. Profiling of nanoparticle-protein interactions by electrophoresis techniques. Anal Bioanal Chem. 2019;411:79–96.

    Article  CAS  PubMed  Google Scholar 

  24. Findlay MR, Freitas DN, Mobed-Miremadi M, Wheeler KE. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environ Sci Nano. 2018;5:64–71.

    Article  CAS  PubMed  Google Scholar 

  25. Ban Z, Yuan P, Yu F, Peng T, Zhou Q, Hu X. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A. 2020;117:10492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ouassil N, Pinals Rebecca L, Del Bonis-O’Donnell Jackson T, Wang Jeffrey W, Landry Markita P. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci Adv. 2022;8:eabm0898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, Hesterberg L, et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun. 2020;11:3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  CAS  PubMed  Google Scholar 

  30. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–19.

    Article  CAS  PubMed  Google Scholar 

  31. cRAP protein sequences: the global proteome machine; 2012. Available from: https://www.thegpm.org/crap/index.html. Accessed 27 Apr 2022.

  32. Bruckner M, Simon J, Jiang S, Landfester K, Mailander V. Preparation of the protein corona: how washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomater. 2020;114:333–42.

    Article  PubMed  Google Scholar 

  33. Docter D, Distler U, Storck W, Kuharev J, Wunsch D, Hahlbrock A, et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat Protoc. 2014;9:2030–44.

    Article  CAS  PubMed  Google Scholar 

  34. Simon J, Kuhn G, Fichter M, Gehring S, Landfester K, Mailander V. Unraveling the in vivo protein corona. Cells. 2021;10:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kastan Jonathan P, Dobrikova Elena Y, Bryant Jeffrey D, Gromeier M. CReP mediates selective translation initiation at the endoplasmic reticulum. Sci Adv. 2020;6:eaba0745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.

    Article  CAS  PubMed  Google Scholar 

  37. Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B. 2012;116:8901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Doorley GW, Payne CK. Nanoparticles act as protein carriers during cellular internalization. Chem Commun. 2012;48:2961–3.

    Article  CAS  Google Scholar 

  39. Hill A, Payne CK. Impact of serum proteins on MRI contrast agents: cellular binding and T2 relaxation. RSC Adv. 2014;4:31735–44.

    Article  CAS  PubMed  Google Scholar 

  40. Doorley GW, Payne CK. Cellular binding of nanoparticles in the presence of serum proteins. Chem Commun. 2011;47:466–8.

    Article  CAS  Google Scholar 

  41. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–81.

    Article  CAS  PubMed  Google Scholar 

  42. Alkilany AM, Lohse SE, Murphy CJ. The gold standard: gold nanoparticle libraries to understand the nano–bio interface. Acc Chem Res. 2013;46:650–61.

    Article  CAS  PubMed  Google Scholar 

  43. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133:2525–34.

    Article  CAS  PubMed  Google Scholar 

  44. Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DW, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8:2439–55.

    Article  CAS  PubMed  Google Scholar 

  45. Runa S, Lakadamyali M, Kemp ML, Payne CK. TiO2 nanoparticle-induced oxidation of the plasma membrane: importance of the protein corona. J Phys Chem B. 2017;121:8619–25.

    Article  CAS  PubMed  Google Scholar 

  46. Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale. 2017;9:7595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Partikel K, Korte R, Mulac D, Humpf HU, Langer K. Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles. Beilstein J Nanotechnol. 2019;10:1002–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grafe C, Weidner A, Luhe MV, Bergemann C, Schacher FH, Clement JH, et al. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Int J Biochem Cell Biol. 2016;75:196–202.

    Article  PubMed  Google Scholar 

  49. Vroman L, Adams A, Fischer G, Munoz P. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55:156–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lima T, Bernfur K, Vilanova M, Cedervall T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci Rep. 2020;10:1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4:3623–32.

    Article  CAS  PubMed  Google Scholar 

  52. Pisani C, Gaillard JC, Odorico M, Nyalosaso JL, Charnay C, Guari Y, et al. The timeline of corona formation around silica nanocarriers highlights the role of the protein interactome. Nanoscale. 2017;9:1840–51.

    Article  CAS  PubMed  Google Scholar 

  53. Dudzik D, Barbas-Bernardos C, Garcia A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal. 2018;147:149–73.

    Article  CAS  PubMed  Google Scholar 

  54. Runa S, Khanal D, Kemp ML, Payne CK. TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes. J Phys Chem C. 2016;120:20736–42.

    Article  CAS  Google Scholar 

  55. Yu Q, Zhao L, Guo C, Yan B, Su G. Regulating protein corona formation and dynamic protein exchange by controlling nanoparticle hydrophobicity. Front Bioeng Biotechnol. 2020;8:210.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Strojan K, Leonardi A, Bregar VB, Krizaj I, Svete J, Pavlin M. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS ONE. 2017;12:e0169552.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Venerando R, Miotto G, Magro M, Dallan M, Baratella D, Bonaiuto E, et al. Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced biomedical applications. J Phys Chem C. 2013;117:20320–31.

    Article  CAS  Google Scholar 

  58. Sakulkhu U, Maurizi L, Mahmoudi M, Motazacker M, Vries M, Gramoun A, et al. Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale. 2014;6:11439–50.

    Article  CAS  PubMed  Google Scholar 

  59. de Castro CE, Panico K, Stangherlin LM, Ribeiro CAS, da Silva MCC, Carneiro-Ramos MS, et al. The protein corona conundrum: exploring the advantages and drawbacks of its presence around amphiphilic nanoparticles. Bioconjug Chem. 2020;31:2638–47.

    Article  PubMed  Google Scholar 

  60. Zhang T, Li G, Miao Y, Lu J, Gong N, Zhang Y, et al. Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials. 2021;276:121021.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Z, Hood ED, Nong J, Ding J, Marcos-Contreras OA, Glassman PM, et al. Combating complement’s deleterious effects on nanomedicine by conjugating complement regulatory proteins to nanoparticles. Adv Mater. 2022;34:e2107070.

    Article  PubMed  Google Scholar 

  62. Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, La Barbera G, et al. The liposome-protein corona in mice and humans and its implications for in vivo delivery. J Mater Chem B. 2014;2:7419–28.

    Article  CAS  PubMed  Google Scholar 

  63. Bigdeli A, Palchetti S, Pozzi D, Hormozi-Nezhad MR, BaldelliBombelli F, Caracciolo G, et al. Exploring cellular interactions of liposomes using protein corona fingerprints and physicochemical properties. ACS Nano. 2016;10:3723–37.

    Article  CAS  PubMed  Google Scholar 

  64. Saha K, Rahimi M, Yazdani M, Kim ST, Moyano DF, Hou S, et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano. 2016;10:4421–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Naidu PSR, Norret M, Smith NM, Dunlop SA, Taylor NL, Fitzgerald M, et al. The protein corona of PEGylated PGMA-based nanoparticles is preferentially enriched with specific serum proteins of varied biological function. Langmuir. 2017;33:12926–33.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics. 2011;11:4569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Gustavo Sosa Macias, Judith Dominguez, and Nathan Rayens for helpful discussion. We thank the Duke University School of Medicine for the use of the Proteomics and Metabolomics Shared Resource, which provided proteomics service, with special thanks to Erik Soderblom and Greg Waitt for technical advice.

Funding

This study received funding from the NSF (CBET-1901579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine K. Payne.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 79.6 KB)

Supplementary file2 (PDF 718 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulsen, K.M., Payne, C.K. Concentration and composition of the protein corona as a function of incubation time and serum concentration: an automated approach to the protein corona. Anal Bioanal Chem 414, 7265–7275 (2022). https://doi.org/10.1007/s00216-022-04278-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04278-y

Keywords

Navigation