Skip to main content
Log in

Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are transport vesicles with diameters ranging from 30 to 1000 nm, secreted by cells in both physiological and pathological conditions. By using the EV shuttling system, biomolecular cargo such as proteins and genetic materials travels between cells resulting in intercellular communication and epigenetic regulation. Because the presence of EVs and cargo molecules in body fluids can predict the state of the parental cells, EV isolation techniques from complex biofluids have been developed. Further exploration of EVs through downstream molecular analysis depends heavily on those isolation technologies. Methodologies based either on physical separation or on affinity binding have been used to isolate EVs. Affinity-based methods for EV isolation are known to produce highly specific and efficient isolation results. However, so far, there is a lack of literature summarizing these methods and their effects on downstream EV molecular analysis. In the present work, we reviewed recent efforts on developing affinity-based methods for the isolation of EVs, with an emphasis on comparing their effects on downstream analysis of EV molecular cargo. Antibody-based isolation techniques produce highly pure EVs, but the harsh eluents damage the EV structure, and some antibodies stay bound to the EVs after elution. Aptamer-based methods use relatively mild elution conditions and release EVs in their native form, but their isolation efficiencies need to be improved. The membrane affinity-based method and other affinity-based methods based on the properties of the EV lipid bilayer also isolate intact EVs, but they can also result in contaminants. From the perspective of affinity-based methods, we investigated the influence of the isolation methods of choice on downstream EV molecular analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Couch Y, Buzàs EI, Vizio DD, Gho YS, Harrison P, Hill AF, et al. A brief history of nearly EV-erything – the rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10(14):e12144-n/a. https://doi.org/10.1002/jev2.12144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo S-C, Tao S-C, Dawn H. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J Extracell Vesicles. 2018;7(1):1508271-n/a. https://doi.org/10.1080/20013078.2018.1508271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int. 2018;2018:8545347–27. https://doi.org/10.1155/2018/8545347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1):20360-n/a. https://doi.org/10.3402/jev.v2i0.20360.

    Article  CAS  Google Scholar 

  5. Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2(1):20389-n/a. https://doi.org/10.3402/jev.v2i0.20389.

    Article  Google Scholar 

  6. Tamkovich SN, Tutanov OS, Laktionov PP. Exosomes: Generation, structure, transport, biological activity, and diagnostic application. Biochem (Biokhimiya) Suppl Ser A Membr Cell Biol. 2016;10(3):163–73. https://doi.org/10.1134/S1990747816020112.

    Article  Google Scholar 

  7. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705. https://doi.org/10.1124/pr.112.005983.

    Article  CAS  PubMed  Google Scholar 

  8. Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ. Proteomic insights into extracellular vesicle biology - defining exosomes and shed microvesicles. Expert Rev Proteomics. 2017;14(1):69–95. https://doi.org/10.1080/14789450.2017.1260450.

    Article  CAS  PubMed  Google Scholar 

  9. Marcoux G, Magron A, Sut C, Laroche A, Laradi S, Hamzeh-Cognasse H, et al. Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions. Transfusion (Philadelphia, Pa). 2019;59(7):2403–14. https://doi.org/10.1111/trf.15300.

    Article  CAS  Google Scholar 

  10. Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87. https://doi.org/10.1093/intimm/dxh267.

    Article  CAS  PubMed  Google Scholar 

  11. Keller S, Ridinger J, Rupp A-K, Janssen JWG, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9(1):86. https://doi.org/10.1186/1479-5876-9-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10(1):5. https://doi.org/10.1186/1479-5876-10-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raj DAA, Fiume I, Capasso G, Pocsfalvi G. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int. 2012;81(12):1263–72. https://doi.org/10.1038/ki.2012.25.

    Article  CAS  PubMed  Google Scholar 

  14. Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol. 2016;17(4):227–39. https://doi.org/10.1038/nrm.2015.15.

    Article  CAS  PubMed  Google Scholar 

  15. Tran PHL, Wang T, Yin W, Tran TTD, Barua HT, Zhang Y, et al. Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs. Int J Pharm. 2019;566:697–707. https://doi.org/10.1016/j.ijpharm.2019.06.028.

    Article  CAS  PubMed  Google Scholar 

  16. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4(1):30087-n/a. https://doi.org/10.3402/jev.v4.30087.

    Article  CAS  PubMed  Google Scholar 

  17. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684–707. https://doi.org/10.7150/thno.41580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2013;35(7):2383–90. https://doi.org/10.1016/j.biomaterials.2013.11.083.

    Article  CAS  PubMed  Google Scholar 

  19. Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach (Review). Int J Mol Med. 2015;36(1):11–7. https://doi.org/10.3892/ijmm.2015.2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song Z, Mao J, Barrero RA, Wang P, Zhang F, Wang T. Development of a CD63 aptamer for efficient cancer immunochemistry and immunoaffinity-based exosome isolation. Molecules (Basel, Switzerland). 2020;25(23):5585. https://doi.org/10.3390/molecules25235585.

    Article  CAS  Google Scholar 

  21. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835–40. https://doi.org/10.1038/nm.2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature (London). 2015;523(7559):177-U82. https://doi.org/10.1038/nature14581.

    Article  CAS  Google Scholar 

  23. Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–77. https://doi.org/10.1039/c7lc00592j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gutierrez Garcia G, Galicia Garcia G, Zalapa Soto J, Izquierdo Medina A, Rotzinger-Rodriguez M, Casas Aguilar GA, et al. Analysis of RNA yield in extracellular vesicles isolated by membrane affinity column and differential ultracentrifugation. PloS One. 2020;15(11):e0238545-e. https://doi.org/10.1371/journal.pone.0238545.

    Article  CAS  Google Scholar 

  25. Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 2020;9(1):1697028-n/a. https://doi.org/10.1080/20013078.2019.1697028.

    Article  CAS  PubMed  Google Scholar 

  26. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804. https://doi.org/10.7150/thno.18133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Proteomic Profiling. 2015;179–209. https://doi.org/10.1007/978-1-4939-2550-6_15.

  28. Shu SL, Yang Y, Allen CL, Hurley E, Tung KH, Minderman H, et al. Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles. 2020;9(1):1692401-n/a. https://doi.org/10.1080/20013078.2019.1692401.

    Article  CAS  PubMed  Google Scholar 

  29. Gardiner C, Vizio DD, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945-n/a. https://doi.org/10.3402/jev.v5.32945.

    Article  CAS  PubMed  Google Scholar 

  30. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):3.22.1-3.9. https://doi.org/10.1002/0471143030.cb0322s30.

    Article  Google Scholar 

  31. Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, Dyrskjøt L, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3(1):25011-n/a. https://doi.org/10.3402/jev.v3.25011.

    Article  PubMed  Google Scholar 

  32. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984–95. https://doi.org/10.1182/blood-2011-08-374793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mol EA, Goumans M-J, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine. 2017;13(6):2061–5. https://doi.org/10.1016/j.nano.2017.03.011.

    Article  CAS  PubMed  Google Scholar 

  34. Nordin JZMD, Lee YB, Vader PP, Mäger IP, Johansson HJP, Heusermann WP, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. 2015;11(4):879–83. https://doi.org/10.1016/j.nano.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods (San Diego, Calif). 2015;87:3–10. https://doi.org/10.1016/j.ymeth.2015.02.019.

    Article  CAS  Google Scholar 

  36. Gamez-Valero A, Monguio-Tortajada M, Carreras-Planella L, Marcel-la F, Beyer K, Borras FE. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641. https://doi.org/10.1038/srep33641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3(1):23430-n/a. https://doi.org/10.3402/jev.v3.23430.

    Article  Google Scholar 

  38. Zhang N, Sun N, Deng C. Rapid isolation and proteome analysis of urinary exosome based on double interactions of Fe3O4@TiO2-DNA aptamer. Talanta (Oxford). 2021;221:121571. https://doi.org/10.1016/j.talanta.2020.121571.

    Article  CAS  Google Scholar 

  39. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med. 2018;16(1):1. https://doi.org/10.1186/s12967-017-1374-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fang X, Duan Y, Adkins GB, Pan S, Wang H, Liu Y, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform. Anal Chem (Washington). 2018;90(4):2787–95. https://doi.org/10.1021/acs.analchem.7b04861.

    Article  CAS  Google Scholar 

  41. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods. 2001;247(1):163–74. https://doi.org/10.1016/S0022-1759(00)00321-5.

    Article  CAS  PubMed  Google Scholar 

  42. Gaillard M, Thuaire A, Nonglaton G, Agache V, Roupioz Y, Raillon C. Biosensing extracellular vesicles: contribution of biomolecules in affinity-based methods for detection and isolation. Analyst (London). 2020;145(6):1997–213. https://doi.org/10.1039/c9an01949a.

    Article  CAS  Google Scholar 

  43. Tkach M, Kowal J, Thery C. Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci. 2018;372(1737):20160479. https://doi.org/10.1098/rstb.2016.0479.

    Article  CAS  Google Scholar 

  44. Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6(1):33935. https://doi.org/10.1038/srep33935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang Y, Wang Y, Wei S, Zhou C, Yu J, Wang G, et al. Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma. J Transl Med. 2021;19(1):104. https://doi.org/10.1186/s12967-021-02775-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol. 2022;9:811971. https://doi.org/10.3389/fbioe.2021.811971.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim H, Shin S. ExoCAS-2: Rapid and pure isolation of exosomes by anionic exchange using magnetic beads. Biomedicines. 2021;9(1):28. https://doi.org/10.3390/biomedicines9010028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, et al. Aptamer-based liquid biopsy. ACS Appl Bio Mater. 2020;3(5):2743–64. https://doi.org/10.1021/acsabm.9b01194.

    Article  CAS  PubMed  Google Scholar 

  49. Chang M, Wang Q, Qin W, Shi X, Xu G. Rational synthesis of aptamer-functionalized polyethylenimine-modified magnetic graphene oxide composites for highly efficient enrichment and comprehensive metabolomics analysis of exosomes. Anal Chem (Washington). 2020;92(23):15497–505. https://doi.org/10.1021/acs.analchem.0c03374.

    Article  CAS  Google Scholar 

  50. Fang X, Tan W. Aptamers generated from Cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43(1):48–57. https://doi.org/10.1021/ar900101s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, et al. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev. 2015;44(5):124–1256. https://doi.org/10.1039/c4cs00357h.

    Article  CAS  Google Scholar 

  52. Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME. Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering (Basel). 2019;6(1):7. https://doi.org/10.3390/bioengineering6010007.

    Article  CAS  PubMed Central  Google Scholar 

  53. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods (San Diego, Calif). 2015;87:46–58. https://doi.org/10.1016/j.ymeth.2015.05.028.

    Article  CAS  Google Scholar 

  54. Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiák L, et al. Mass spectrometry of extracellular vesicles. Mass Spectrom Rev. 2016;35(1):3–21. https://doi.org/10.1002/mas.21457.

    Article  CAS  PubMed  Google Scholar 

  55. Lucchetti D, Fattorossi A, Sgambato A. Extracellular vesicles in oncology: progress and pitfalls in the methods of isolation and analysis. Biotechnol J. 2019;14(1):e1700716-n/a. https://doi.org/10.1002/biot.201700716.

    Article  CAS  PubMed  Google Scholar 

  56. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–50. https://doi.org/10.1021/acs.chemrev.7b00534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Serrano-Pertierra E, Oliveira-Rodriguez M, Matos M, Gutierrez G, Moyano A, Salvador M, et al. Extracellular vesicles: current analytical techniques for detection and quantification. Biomolecules (Basel, Switzerland). 2020;10(6):824. https://doi.org/10.3390/biom10060824.

    Article  CAS  Google Scholar 

  58. Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H. Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano. 2016;10(2):1802–9. https://doi.org/10.1021/acsnano.5b07584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles. 2017;6(1):1286095-n/a. https://doi.org/10.1080/20013078.2017.1286095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gupta D, Liang X, Pavlova S, Wiklander OPB, Corso G, Zhao Y, et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. J Extracell Vesicles. 2020;9(1):1800222-n/a. https://doi.org/10.1080/20013078.2020.1800222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang S, Khan A, Huang R, Ye S, Di K, Xiong T, et al. Recent advances in single extracellular vesicle detection methods. Biosens Bioelectron. 2020;154:112056. https://doi.org/10.1016/j.bios.2020.112056.

    Article  CAS  PubMed  Google Scholar 

  62. Yan H, Li Y, Cheng S, Zeng Y. Advances in analytical technologies for extracellular vesicles. Anal Chem (Washington). 2021;93(11):4739–74. https://doi.org/10.1021/acs.analchem.1c00693.

    Article  CAS  Google Scholar 

  63. Chen B-Y, Sung CW-H, Chen C, Cheng C-M, Lin DP-C, Huang C-T, et al. Advances in exosomes technology. Clin Chim Acta. 2019;493:14–9. https://doi.org/10.1016/j.cca.2019.02.021.

    Article  CAS  PubMed  Google Scholar 

  64. Liangsupree T, Multia E, Riekkola M-L. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A. 2021;1636. https://doi.org/10.1016/j.chroma.2020.461773.

  65. Palstrom NB, Rasmussen LM, Beck HC. Affinity capture enrichment versus affinity depletion: a comparison of strategies for increasing coverage of low-abundant human plasma proteins. Int J Mol Sci. 2020;21(16):5903. https://doi.org/10.3390/ijms21165903.

    Article  CAS  PubMed Central  Google Scholar 

  66. Zhang J, Luong THN, Hickey R, Walters N, Wang X, Kwak KJ, et al. Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids. Sci Rep. 2021;11(1):8034. https://doi.org/10.1038/s41598-021-86910-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods (San Diego, Calif). 2012;56(2):293–304. https://doi.org/10.1016/j.ymeth.2012.01.002.

    Article  CAS  Google Scholar 

  68. Chen C, Lin B-R, Hsu M-Y, Cheng C-M. Paper-based devices for isolation and characterization of extracellular vesicles. Jove-J Vis Exp. 2015;98:e52722-e. https://doi.org/10.3791/52722.

    Article  CAS  Google Scholar 

  69. Multia E, Tear CJY, Palviainen M, Siljander P, Riekkola M-L. Fast isolation of highly specific population of platelet-derived extracellular vesicles from blood plasma by affinity monolithic column, immobilized with anti-human CD61 antibody. Anal Chim Acta. 2019;1091:160–8. https://doi.org/10.1016/j.aca.2019.09.022.

    Article  CAS  PubMed  Google Scholar 

  70. Lo T-W, Zhu Z, Purcell E, Watza D, Wang J, Kang Y-T, et al. Microfluidic device for high-throughput affinity-based isolation of extracellular vesicles. Lab Chip. 2020;2(1):1762–177. https://doi.org/10.1039/c9lc01190k.

    Article  CAS  Google Scholar 

  71. Kim G, Yoo CE, Kim M, Kang HJ, Park D, Lee M, et al. Noble polymeric surface conjugated with zwitterionic moieties and antibodies for the isolation of exosomes from human serum. Bioconjug Chem. 2012;23(10):2114–20. https://doi.org/10.1021/bc300339b.

    Article  CAS  PubMed  Google Scholar 

  72. Chen W, Li H, Su W, Qin J. Microfluidic device for on-chip isolation and detection of circulating exosomes in blood of breast cancer patients. Biomicrofluidics. 2019;13(5):054113. https://doi.org/10.1063/1.5110973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mohtar MA, Syafruddin SE, Nasir SN, Yew LT. Revisiting the roles of pro-metastatic EpCAM in cancer. Biomolecules (Basel, Switzerland). 2020;10(2):255. https://doi.org/10.3390/biom10020255.

    Article  CAS  Google Scholar 

  74. Kang YT, Purcell E, Palacios-Rolston C, Lo TW, Ramnath N, Jolly S, et al. Isolation and profiling of circulating tumor-associated exosomes using extracellular vesicular lipid–protein binding affinity based microfluidic device. Small (Weinheim an der Bergstrasse, Germany). 2019;15(47):e1903600-n/a. https://doi.org/10.1002/smll.201903600.

    Article  CAS  Google Scholar 

  75. Zhang P, Zhou X, He M, Shang Y, Tetlow AL, Godwin AK, et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3(6):438–51. https://doi.org/10.1038/s41551-019-0356-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14(11):1891–900. https://doi.org/10.1039/c4lc00136b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Amigorena S, Zitvogel L, Théry C. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79. https://doi.org/10.1038/nri855.

    Article  CAS  PubMed  Google Scholar 

  78. Qi R, Zhu G, Wang Y, Wu S, Li S, Zhang D, et al. Microfluidic device for the analysis of MDR cancerous cell-derived exosomes’ response to nanotherapy. Biomed Microdevice. 2019;21(2):1–9. https://doi.org/10.1007/s10544-019-0381-1.

    Article  Google Scholar 

  79. Kang Y-T, Kim YJ, Bu J, Cho Y-H, Han S-W, Moon B-I. High-purity capture and release of circulating exosomes using an exosome-specific dual-patterned immunofiltration (ExoDIF) device. Nanoscale. 2017;9(36):13495–505. https://doi.org/10.1039/c7nr04557c.

    Article  CAS  PubMed  Google Scholar 

  80. Ashcroft BA, de Sonneville J, Yuana Y, Osanto S, Bertina R, Kuil ME, et al. Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed Microdevice. 2012;14(4):641–9. https://doi.org/10.1007/s10544-012-9642-y.

    Article  CAS  Google Scholar 

  81. He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14(19):3773–80. https://doi.org/10.1039/c4lc00662c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6(1):6999. https://doi.org/10.1038/ncomms7999.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16(16):3033–42. https://doi.org/10.1039/c6lc00279j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tian F, Liu C, Deng J, Sun J. Microfluidic separation, detection, and engineering of extracellular vesicles for cancer diagnostics and drug delivery. Acc Mater Res. 2022. https://doi.org/10.1021/accountsmr.1c00276.

    Article  Google Scholar 

  85. Zhang K, Yue Y, Wu S, Liu W, Shi J, Zhang Z. Rapid capture and nondestructive release of extracellular vesicles using aptamer-based magnetic isolation. ACS Sens. 2019;4(5):1245–51. https://doi.org/10.1021/acssensors.9b00060.

    Article  CAS  PubMed  Google Scholar 

  86. Yang L, Yin X, An B, Li F. Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy. Anal Chem (Washington). 2021;93(3):1709–16. https://doi.org/10.1021/acs.analchem.0c04308.

    Article  CAS  Google Scholar 

  87. Brennan K, Martin K, FitzGerald SP, O’Sullivan J, Wu Y, Blanco A, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep. 2020;10(1):1039. https://doi.org/10.1038/s41598-020-57497-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta (Oxford). 2018;184:219–26. https://doi.org/10.1016/j.talanta.2018.02.083.

    Article  CAS  Google Scholar 

  89. Zhang J, Shi J, Liu W, Zhang K, Zhao H, Zhang H, et al. A simple, specific and “on-off” type MUC1 fluorescence aptasensor based on exosomes for detection of breast cancer. Sens Actuators B Chem. 2018;276:552–9. https://doi.org/10.1016/j.snb.2018.08.056.

    Article  CAS  Google Scholar 

  90. Wan Y, Cheng G, Liu X, Hao S-J, Nisic M, Zhu C-D et al. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat Biomed Eng. 2017;1(4). https://doi.org/10.1038/s41551-017-0058.

  91. Xue F, Chen Y, Wen Y, Abhange K, Zhang W, Cheng G, et al. Isolation of extracellular vesicles with multivalent aptamers. Analyst (London). 2021;146(1):253–61. https://doi.org/10.1039/d0an01420f.

    Article  CAS  Google Scholar 

  92. Zhang H, Wang A, Qi S, Cheng S, Yao B, Xu Y. Protein tyrosine kinase 7 (PTK7) as a predictor of lymph node metastases and a novel prognostic biomarker in patients with prostate cancer. Int J Mol Sci. 2014;15(7):11665–77. https://doi.org/10.3390/ijms150711665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Levine HA, Nilsen-Hamilton M. A mathematical analysis of SELEX. Comput Biol Chem. 2007;31(1):11–35. https://doi.org/10.1016/j.compbiolchem.2006.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PloS One. 2015;10(8):e0136133-e. https://doi.org/10.1371/journal.pone.0136133.

    Article  CAS  Google Scholar 

  95. Mangaraj M, Nanda R, Panda S. Apolipoprotein A-I: A Molecule of diverse function. Indian J Clin Biochem. 2015;31(3):253–9. https://doi.org/10.1007/s12291-015-0513-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins (vol 13, pg 423, 2011). Nat Cell Biol. 2015; 17(1):104-. https://doi.org/10.1038/ncb3074.

  97. Gao F, Jiao F, Xia C, Zhao Y, Ying W, Xie Y, et al. A novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and TiO2. Chem Sci (Cambridge). 2019;10(6):1579–88. https://doi.org/10.1039/c8sc04197k.

    Article  CAS  Google Scholar 

  98. Deregibus MC, Figliolini F, D’Antico S, Manzini PM, Pasquino C, De Lena M, et al. Charge-based precipitation of extracellular vesicles. Int J Mol Med. 2016;38(5):1359–66. https://doi.org/10.3892/ijmm.2016.2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Campos-Silva C, Suárez H, Jara-Acevedo R, Linares-Espinós E, Martinez-Piñeiro L, Yáñez-Mó M, et al. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci Rep. 2019;9(1):2042. https://doi.org/10.1038/s41598-019-38516-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol BioSyst. 2016;12(5):147–1419. https://doi.org/10.1039/c6mb00082g.

    Article  CAS  Google Scholar 

  101. Cheng N, Du D, Wang X, Liu D, Xu W, Luo Y, et al. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol (Regular ed). 2019;37(11):1236–54. https://doi.org/10.1016/j.tibtech.2019.04.008.

    Article  CAS  Google Scholar 

  102. Ingato D, Lee JU, Sim SJ, Kwon YJ. Good things come in small packages: overcoming challenges to harness extracellular vesicles for therapeutic delivery. J Control Release. 2016;241:174–85. https://doi.org/10.1016/j.jconrel.2016.09.016.

    Article  CAS  PubMed  Google Scholar 

  103. Liu M, Yu X, Chen Z, Yang T, Yang D, Liu Q, et al. Aptamer selection and applications for breast cancer diagnostics and therapy. J Nanobiotechnology. 2017;15(1):81. https://doi.org/10.1186/s12951-017-0311-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Laulagnier K, Vincent-Schneider H, Hamdi S, Subra C, Lankar D, Record M. Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol Dis. 2005;35(2):116–21. https://doi.org/10.1016/j.bcmd.2005.05.010.

    Article  CAS  PubMed  Google Scholar 

  105. Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal. 1999;13(3):133–40. https://doi.org/10.1002/(SICI)1098-2825(1999)13:3%3c133::AID-JCLA8%3e3.0.CO;2-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Veerman RE, Teeuwen L, Czarnewski P, Güclüler Akpinar G, Sandberg A, Cao X, et al. Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles. 2021;10(9):e12128-n/a. https://doi.org/10.1002/jev2.12128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2(1):19861-n/a. https://doi.org/10.3402/jev.v2i0.19861.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). G.S. thanks a graduate scholarship from the University of Guelph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ströhle, G., Gan, J. & Li, H. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal Bioanal Chem 414, 7051–7067 (2022). https://doi.org/10.1007/s00216-022-04178-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04178-1

Keywords

Navigation