Skip to main content
Log in

An efficient aggregation-induced electrochemiluminescent immunosensor by using TiO2 nanoparticles as coreaction accelerator and energy donor for aflatoxin B1 detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, we fabricated a label-free ECL immunosensor for aflatoxin B1 (AFB1) detection. In this system, a small organic aggregation-induced electrochemiluminescence luminophore, 2,5-di-tetraphenylethylene-ylthiazolo [5,4-d] thiazole, was designed, named TPETTZ. Polyaniline-wrapped TiO2 nanoparticles (PANI/TiO2 NPs) complex was synthesized through one-step in situ oxidation polymerization of aniline, and performed excellent electrical conductivity and abundant amino groups. As an ECL accelerator, TiO2 nanoparticles (TiO2 NPs) promoted the oxidation of tri-n-propylamine (TPA) to generate more TPA; in addition, it also acted as a donor to improve the ECL intensity of TPETTZ (acceptor) through electrochemiluminescence resonance energy transfer (ECL-RET). Encouraged by the above, under the existence of TPA, TPETTZ displayed a strong and continuously stable ECLanode signal due to the introduction of PANI/TiO2 NPs. Therefore, the immunosensor was constructed for AFB1 detection based on the quenching effect of target on the ECL signal, and a linearly decreasing ECL signal was obtained as the increasement of AFB1 in the range of 75 fg/mL to 100 ng/mL, with a lower detection limit of 27.5 fg/mL. Moreover, the as-prepared sensing platform performed a satisfactory anti-interference, stability, and reproducibility, and appeared a good accuracy in walnut sample analysis, presenting a promising application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang RZ, Tong F, Yang LQ, Adsetts JR, Yan TH, Wang RY, Ding ZF, Wang HB. Facile synthesis and efficient electrochemiluminescence of a readily accessible pyridopyrimidine. Chem. Commun. 2018;54:9897–900.

    Article  CAS  Google Scholar 

  2. Chen MM, Wang Y, Cheng SB, Wen W, Zhang XH, Wang SF, Huang WH. Construction of highly efficient resonance energy transfer platform inside a nanosphere for ultrasensitive electrochemiluminescence detection. Anal. Chem. 2018;90:5075–81.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Zhou SW, Li LL, Zhu JJ. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today. 2017;12:98–115.

    Article  CAS  Google Scholar 

  4. Wang XY, Xiao SY, Yang CP, Hu CY, Wang X, Zhen SJ, Huang CZ, Li YF. Zinc−metal organic frameworks: a coreactant-free electrochemiluminescence luminophore for ratiometric detection of miRNA-133a. Anal. Chem. 2021;93:14178–86.

    Article  CAS  PubMed  Google Scholar 

  5. Carrara S, Aliprandi A, Hogan CF, Cola LD. Aggregation-induced electrochemiluminescence of platinum(II) complexes. J Am Chem Soc. 2017;139:14605–10.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang MH, Li SK, Zhong X, Liang WB, Chai YQ, Zhuo Y, Yuan R. Electrochemiluminescence enhanced by restriction of intramolecular motions (RIM): tetraphenylethylene microcrystals as a novel emitter for mucin 1 detection. Anal. Chem. 2019;91:3710–6.

    Article  CAS  PubMed  Google Scholar 

  7. Richter MM. Electrochemiluminescence (ECL). Chem. Rev. 2004;104:3003–36.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang R, Zhong X, Chen AY, Liu JL, Li SK, Chai YQ, Zhuo Y, Yuan R. Novel Ru(bpy)2(cpaphen)2+/TPrA/TiO2 ternary ECL system: an efficient platform for the detection of glutathione with Mn2+ as substitute target. Anal. Chem. 2019;91:3681–6.

    Article  CAS  PubMed  Google Scholar 

  9. Guo JN, Xie MS, Du PY, Liu Y, Lu XQ. Signal amplification strategy using atomically gold-supported VO2 nanobelts as a co-reaction accelerator for ultrasensitive electrochemiluminescent sensor construction based on the resonance energy transfer platform. Anal. Chem. 2021;93:10619–26.

    Article  CAS  PubMed  Google Scholar 

  10. Qin DM, Meng S, Wu YS, Mo GC, Jiang XH, Deng BY. Design of a dual-wavelength ratiometric electrochemiluminescence immunosensor for sensitive detection of myloid-β protein in human serum. ACS Sustain Chem. Eng. 2021;9:7541–9.

    Article  CAS  Google Scholar 

  11. Selcu S, Selloni A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat Mater. 2016;15:1107–12.

    Article  CAS  Google Scholar 

  12. Xia MM, Zhou F, Feng XY, Sun JH, Wang L, Li N, Wang XY, Wang GF. A DNAzyme-based dual-stimuli responsive electrochemiluminescence resonance energy transfer platform for ultrasensitive anatoxin-A detection. Anal. Chem. 2021;93:11284–90.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu LP, Yu LY, Ye J, Yan MX, Peng Y, Huang JS, Yang XR. A ratiometric electrochemiluminescence strategy based on two-dimensional nanomaterial-nucleic acid interactions for biosensing and logic gates operation. Biosens and Bioelectron. 2021;178:113022.

    Article  CAS  Google Scholar 

  14. Lu HJ, Pan JB, Wang YZ, Ji SY, Zhao W, Luo XL, Xu JJ, Chen HY. Electrochemiluminescence energy resonance transfer system between RuSi nanoparticles and hollow Au nanocages for nucleic acid detection. Anal. Chem. 2018;90:10434–41.

    Article  CAS  PubMed  Google Scholar 

  15. Lei YM, Huang WX, Zhao M, Chai YQ, Yuan R, Zhuo Y. Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal. Chem. 2015;87:7787–94.

    Article  CAS  PubMed  Google Scholar 

  16. Wu ZL, Liu SH, Li YY, Tang F, Zhao ZD, Liu Q, Li YY, Wei Q. Electrochemiluminescence resonance energy transfer system fabricated by quantum state complexes for cardiac troponin I detection. Sensor Actuat B-Chem. 2021;336:129733.

    Article  CAS  Google Scholar 

  17. Zhang SP, Zheng HL, Chen YJ, Yi H, Dai H, Hong ZS, Lin YY. Electrochemiluminescence resonance energy transfer between Ru(bpy)32+ and CdZnSe@ZnSe quantum dots for ovarian cancer biomarker detection. ACS Appl. Nano Mater. 2019;2:7061–6.

    Article  CAS  Google Scholar 

  18. Pandey RK, Lakshminarayanan V. A quick electrochemical approach for synthesizing the metal nanostructures stabilized with conducting polymers. Mater Res Bull. 2014;50:413–6.

    Article  CAS  Google Scholar 

  19. Tan XX, Wang JP, Pang XJ, Liu L, Sun Q, You Q, Tan FP, Li N. Indocyanine green-loaded silver nanoparticle@polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light-triggered photothermal and photodynamic therapy. ACS Appl. Mater. Inter. 2016;8:34991–5003.

    Article  CAS  Google Scholar 

  20. Bian CQ, Yu YJ, Xue G. Synthesis of conducting polyaniline/TiO2 composite nanofibres by one-step in situ polymerization method. J Appl Polym Sci. 2007;104:21–6.

    Article  CAS  Google Scholar 

  21. Chen X, Li HK, Wu HS, Wu YX, Shang YY, Pan J, Xiong X. Fabrication of TiO2@PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light. Mater Lett. 2016;172:52–5.

    Article  CAS  Google Scholar 

  22. Wu H, Wang HY, Wu J, Han GQ, Liu YL, Zou P. A novel fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for sensitive and label-free detection of aflatoxin B1. J Hazard Mater. 2021;415:125584.

    Article  CAS  PubMed  Google Scholar 

  23. Mao LB, Liu H, Yao LL, Wen W, Chen MM, Zhang XH, Wang SF. Construction of a dual-functional CuO/BiOCl heterojunction for high-efficiently photoelectrochemical biosensing and photoelectrocatalytic degradation of aflatoxin B1. Chem Eng J. 2022;429:132297.

    Article  CAS  Google Scholar 

  24. Lv XY, Bi MM, Xu XY, Li YP, Geng C, Cui B, Fang YS. An ultrasensitive ratiometric immunosensor based on the ratios of conjugated distyrylbenzene derivative nanosheets with AIECL properties and electrochemical signal for CYFRA21-1 detection. Anal Bioanal Chem. 2021;414:1389–402.

    Article  PubMed  CAS  Google Scholar 

  25. Bian CQ, Yu AS, Wu HQ. Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors. Electrochem Commun. 2009;11:266–9.

    Article  CAS  Google Scholar 

  26. Lv XY, Xu XY, Miao T, Zang XF, Geng C, Li YP, Cui B, Fang YS. A ratiometric electrochemiluminescent/electrochemical strategy based on novel designed BPYHBF nanorod and Fc-MOF with tungsten for ultrasensitive AFB1 detection. Sensor Actuat B-Chem. 2022;352:131026.

    Article  CAS  Google Scholar 

  27. Bian CQ, Yu YJ, Xue G. A simple approach to control the growth of polyaniline nanofibers nanofibres by one-step in situ polymerization method. J Appl Polym Sci. 2007;104:21–6.

    Article  CAS  Google Scholar 

  28. Fleaca CT, Scarisoreanu M, Morjan I, Luculescu C, Niculescu A-M, Badoi A, Vasile E, Kovacs G. Laser oxidative pyrolysis synthesis and annealing of TiO2 nanoparticles embedded in carbon–silica shells/matrix. Applied Surface Science. 2015;336:226-233.

    Article  CAS  Google Scholar 

  29. Li YP, Geng C, Xu XY, Lv XY, Fang YS, Wang N, Yang YJ, Cui B. Construction of polythiophene-derivative films as a novel electrochemical sensor for highly sensitive detection of nitrite. Anal Bioanal Chem. 2021;413:6639–47.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang LX, Zhang LJ, Wan MX, Wei Y. Polyaniline micro/nanofibers doped with saturation fatty acids. Synthetic Metals. 2006;156:454–8.

    Article  CAS  Google Scholar 

  31. Zhang LJ, Wan MX. Polyaniline/TiO2 composite nanotubes. J. Phys. Chem. B. 2003;107:6748–53.

    Article  CAS  Google Scholar 

  32. Lu LP, Zhang LL, Miao WJ, Wang XY, Guo GS. Aggregation-induced electrochemiluminescence of the dichlorobis(1,10-phenanthroline)ruthenium(II) (Ru(phen)2Cl2)/Tri-n-propylamine (TPrA) system in H2O−MeCN mixtures for identification of nucleic acids. Anal. Chem. 2020;92:9613–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wang XM, Yu L, Kang Q, Chen L, Jin YC, Zou GZ, Shen DZ. Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochim Acta. 2020; 360: 136992.

  34. Han Q, Wang C, Li ZZ, Wu JL, Liu PK, M FJ, Fu YZ. Multifunctional zinc oxide promotes electrochemiluminescence of porphyrin aggregates for ultrasensitive detection of copper ion. Anal. Chem. 2020;92:3324–31.

    Article  CAS  PubMed  Google Scholar 

  35. Wu ZL, Liu SH, Li YY, Tang F, Zhao ZD, Liu Q, Li YY, Wei Q. Electrochemiluminescence resonance energy transfer system fabricated by quantum state complexes for cardiac troponin I detection. Sensors Actuators B-Chem. 2021;336:129733.

    Article  CAS  Google Scholar 

  36. Zhao LJ, Mao JF, Hu L, Zhang S, Yang XF. Self-replicating catalyzed hairpin assembly for rapid aflatoxin B1 detection. Anal. Methods. 2021;13:222.

    Article  PubMed  Google Scholar 

  37. Hu DY, Xiao SS, Guo QQ, Yue RR, Geng DM, Ji DB. Luminescence method for detection of aflatoxin B1 using ATP-releasing nucleotides. RSC Adv. 2021;11:24027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang B, Lu Y, Yang CN, Guo QF, Nie GM. Simple “signal-on” photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites. Biosens and Bioelectron. 2019;134:42–8.

    Article  CAS  Google Scholar 

  39. Wu ZH, Sun DW, Pu HB, Wei QY, Lin XR. Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chem. 2022;372:131293.

    Article  CAS  PubMed  Google Scholar 

  40. Xiong XH, Li YF, Yuan W, Lu YC, Xiong X, Li Y, Chen XY, Liu YJ. Screen printed bipolar electrode for sensitive electrochemiluminescence detection of aflatoxin B1 in agricultural products. Biosens and Bioelectron. 2020;150:111873.

    Article  CAS  Google Scholar 

  41. Wu JZ, Ali S, Ouyang Q, Wang L, Rong YW, Chen QS. Highly specific and sensitive detection of aflatoxin B1 in food based on upconversion nanoparticles-black phosphorus nanosheets aptasensor. Microchem J. 2021;171:106847.

    Article  CAS  Google Scholar 

  42. Tang WZ, Qi YC, Li ZH. A portable, cost-effective and user-friendly instrument for colorimetric enzyme-linked immunosorbent assay and rapid detection of aflatoxin B1. Foods. 2021;10:2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful for the support of the National Natural Science Foundation of China (No. 21705084) and the Natural Science Foundation of Shandong Province of China (No. ZR2017BB074, No. ZR2018PB015), National Training Program of Innovation and Entrepreneurship for Undergraduates (No. S202010431027), Qilu University of Technology of Training Program of Innovation and Entrepreneurship for Undergraduates (No. xj201910431125), the Innovation Team of Jinan City (2018GXRC004), and Special Funds for Taishan Scholars Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishan Fang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Hu, Q., Miao, T. et al. An efficient aggregation-induced electrochemiluminescent immunosensor by using TiO2 nanoparticles as coreaction accelerator and energy donor for aflatoxin B1 detection. Anal Bioanal Chem 414, 4837–4847 (2022). https://doi.org/10.1007/s00216-022-04106-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04106-3

Keywords

Navigation