Skip to main content
Log in

MIMAS: microfluidic platform in tandem with MALDI mass spectrometry for protein quantification from small cell ensembles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Understanding cell-to-cell variation at the molecular level provides relevant information about biological phenomena and is critical for clinical and biological research. Proteins carry important information not available from single-cell genomics and transcriptomics studies; however, due to the minute amount of proteins in single cells and the complexity of the proteome, quantitative protein analysis at the single-cell level remains challenging. Here, we report an integrated microfluidic platform in tandem with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF–MS) for the detection and quantification of targeted proteins from small cell ensembles (> 10 cells). All necessary steps for the assay are integrated on-chip including cell lysis, protein immunocapture, tryptic digestion, and co-crystallization with the matrix solution for MALDI-MS analysis. We demonstrate that our approach is suitable for protein quantification by assessing the apoptotic protein Bcl-2 released from MCF-7 breast cancer cells, ranging from 26 to 223 cells lysed on-chip (8.75 nL wells). A limit of detection (LOD) of 11.22 nM was determined, equivalent to 5.91 × 107 protein molecules per well. Additionally, the microfluidic platform design was further improved, establishing the successful quantification of Bcl-2 protein from MCF-7 cell ensembles ranging from 8 to 19 cells in 4 nL wells. The LOD in the smaller well designs for Bcl-2 resulted in 14.85 nM, equivalent to 3.57 × 107 protein molecules per well. This work shows the capability of our approach to quantitatively assess proteins from cell lysate on the MIMAS platform for the first time. These results demonstrate our approach constitutes a promising tool for quantitative targeted protein analysis from small cell ensembles down to single cells, with the capability for multiplexing through parallelization and automation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a difference? Cell. 2010;141(4):559–63. https://doi.org/10.1016/j.cell.2010.04.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheung TK, Lee C-Y, Bayer FP, McCoy A, Kuster B, Rose CM. Defining the carrier proteome limit for single-cell proteomics. Nat Methods. 2021;18(1):76–83. https://doi.org/10.1038/s41592-020-01002-5.

    Article  CAS  PubMed  Google Scholar 

  3. Liu J, He H, Xie D, Wen Y, Liu Z. Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays. Nat Protoc. 2021;16(7):3522–46. https://doi.org/10.1038/s41596-021-00547-9.

    Article  CAS  PubMed  Google Scholar 

  4. Qian M, Yan F, Yuan T, Yang B, He Q, Zhu H. Targeting post-translational modification of transcription factors as cancer therapy. Drug Discov Today. 2020;25(8):1502–12. https://doi.org/10.1016/j.drudis.2020.06.005.

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee B, Thakur SS. Investigation of post-translational modifications in type 2 diabetes. Clin Proteom. 2018;15(1):32. https://doi.org/10.1186/s12014-018-9208-y.

    Article  CAS  Google Scholar 

  6. Nakamura T, Lipton SA. Protein S-nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci. 2016;37(1):73–84. https://doi.org/10.1016/j.tips.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  7. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature. 2003;425(6959):737–41. https://doi.org/10.1038/nature02046.

    Article  CAS  PubMed  Google Scholar 

  8. Slavov N. Single-cell protein analysis by mass spectrometry. Curr Opin Chem Biol. 2021;60:1–9. https://doi.org/10.1016/j.cbpa.2020.04.018.

    Article  CAS  PubMed  Google Scholar 

  9. Kelly RT. Single-cell proteomics: progress and prospects. Mol Cell Proteomics. 2020;19(11):1739–48. https://doi.org/10.1074/mcp.R120.002234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Belov ME, Gorshkov MV, Udseth HR, Anderson GA, Smith RD. Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal Chem. 2000;72(10):2271–9. https://doi.org/10.1021/ac991360b.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Chen X, Zhang Y, Liu J. Advancing single-cell proteomics and metabolomics with microfluidic technologies. Analyst. 2019;144(3):846–58. https://doi.org/10.1039/C8AN01503A.

    Article  CAS  PubMed  Google Scholar 

  12. Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat Rev Genet. 2017;18(6):345–61. https://doi.org/10.1038/nrg.2017.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah GJ, Ohta AT, Chiou EPY, Wu MC, Kim C-JC. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip. 2009;9(12):1732–9. https://doi.org/10.1039/B821508A.

    Article  CAS  PubMed  Google Scholar 

  14. Ali-Cherif A, Begolo S, Descroix S, Viovy J-L, Malaquin L. Programmable magnetic tweezers and droplet microfluidic device for high-throughput nanoliter multi-step assays. Angew Chem Int Edit. 2012;51(43):10765–9. https://doi.org/10.1002/anie.201203862.

    Article  CAS  Google Scholar 

  15. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686. https://doi.org/10.1038/ncomms9686.

    Article  CAS  PubMed  Google Scholar 

  16. Hunt TP, Issadore D, Westervelt RM. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip. 2008;8(1):81–7. https://doi.org/10.1039/B710928H.

    Article  CAS  PubMed  Google Scholar 

  17. Kim D, Sonker M, Ros A. Dielectrophoresis: from molecular to micrometer-scale analytes. Anal Chem. 2019;91(1):277–95. https://doi.org/10.1021/acs.analchem.8b05454.

    Article  CAS  PubMed  Google Scholar 

  18. Bhattacharya S, Chao T-C, Ariyasinghe N, Ruiz Y, Lake D, Ros R, Ros A. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal Bioanal Chem. 2014;406(7):1855–65. https://doi.org/10.1007/s00216-013-7598-2.

    Article  CAS  PubMed  Google Scholar 

  19. Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep. 2017;7:44447–44447. https://doi.org/10.1038/srep44447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8. https://doi.org/10.1038/nmeth.4380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, Koya RC, Liu C-C, Kwong GA, Radu CG, Ribas A, Heath JR. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nature Med. 2011;17(6):738–43. https://doi.org/10.1038/nm.2375.

    Article  CAS  PubMed  Google Scholar 

  22. Shi Q, Qin L, Wei W, Geng F, Fan R, Shik Shin Y, Guo D, Hood L, Mischel PS, Heath JR. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci. 2012;109(2):419–24. https://doi.org/10.1073/pnas.1110865109.

    Article  PubMed  Google Scholar 

  23. Schubert SM, Walter SR, Manesse M, Walt DR. Protein counting in single cancer cells. Anal Chem. 2016;88(5):2952–7. https://doi.org/10.1021/acs.analchem.6b00146.

    Article  CAS  PubMed  Google Scholar 

  24. Rissin DM, Fournier DR, Piech T, Kan CW, Campbell TG, Song L, Chang L, Rivnak AJ, Patel PP, Provuncher GK, Ferrell EP, Howes SC, Pink BA, Minnehan KA, Wilson DH, Duffy DC. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal Chem. 2011;83(6):2279–85. https://doi.org/10.1021/ac103161b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li S, Plouffe BD, Belov AM, Ray S, Wang X, Murthy SK, Karger BL, Ivanov AR. An integrated platform for isolation, processing, and mass spectrometry-based proteomic profiling of rare cells in whole blood. Mol Cell Proteomics. 2015;14(6):1672–83. https://doi.org/10.1074/mcp.M114.045724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y, Moore RJ, Shukla AK, Petyuk VA, Campbell-Thompson M, Mathews CE, Smith RD, Qian W-J, Kelly RT. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat Commun. 2018;9(1):882. https://doi.org/10.1038/s41467-018-03367-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Z-Y, Huang M, Wang X-K, Zhu Y, Li J-S, Wong CCL, Fang Q. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis. Anal Chem. 2018;90(8):5430–8. https://doi.org/10.1021/acs.analchem.8b00661.

    Article  CAS  PubMed  Google Scholar 

  28. Budnik B, Levy E, Harmange G, Slavov N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19(1):161. https://doi.org/10.1186/s13059-018-1547-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH, Serra M, Kharchenko P, Koller A, Slavov N. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 2021;22(1):50. https://doi.org/10.1186/s13059-021-02267-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Soper SA, Murray KK. Microfluidics with MALDI analysis for proteomics—a review. Anal Chim Acta. 2009;649(2):180–90. https://doi.org/10.1016/j.aca.2009.07.037.

    Article  CAS  PubMed  Google Scholar 

  31. Yin L, Zhang Z, Liu Y, Gao Y, Gu J. Recent advances in single-cell analysis by mass spectrometry. Analyst. 2019;144(3):824–45. https://doi.org/10.1039/C8AN01190G.

    Article  CAS  PubMed  Google Scholar 

  32. Mao S, Li W, Zhang Q, Zhang W, Huang Q, Lin J-M. Cell analysis on chip-mass spectrometry. TrAC, Trends Anal Chem. 2018;107:43–59. https://doi.org/10.1016/j.trac.2018.06.019.

    Article  CAS  Google Scholar 

  33. Hatakeyama T, Chen DL, Ismagilov RF. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J Am Chem Soc. 2006;128(8):2518–9. https://doi.org/10.1021/ja057720w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Momotenko D, Qiao L, Cortés-Salazar F, Lesch A, Wittstock G, Girault HH. Electrochemical push–pull scanner with mass spectrometry detection. Anal Chem. 2012;84(15):6630–7. https://doi.org/10.1021/ac300999v.

    Article  CAS  PubMed  Google Scholar 

  35. Küster SK, Fagerer SR, Verboket PE, Eyer K, Jefimovs K, Zenobi R, Dittrich PS. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets. Anal Chem. 2013;85(3):1285–9. https://doi.org/10.1021/ac3033189.

    Article  CAS  PubMed  Google Scholar 

  36. Haidas D, Napiorkowska M, Schmitt S, Dittrich PS. Parallel sampling of nanoliter droplet arrays for noninvasive protein analysis in discrete yeast cultivations by MALDI-MS. Anal Chem. 2020;92(5):3810–8. https://doi.org/10.1021/acs.analchem.9b05235.

    Article  CAS  PubMed  Google Scholar 

  37. Yang M, Cruz Villarreal J, Ariyasinghe N, Kruithoff R, Ros R, Ros A. Quantitative approach for protein analysis in small cell ensembles by an integrated microfluidic chip with MALDI mass spectrometry. Anal Chem. 2021;93(15):6053–61. https://doi.org/10.1021/acs.analchem.0c04112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang M, Nelson R, Ros A. Toward analysis of proteins in single cells: a quantitative approach employing isobaric tags with MALDI mass spectrometry realized with a microfluidic platform. Anal Chem. 2016;88(13):6672–9. https://doi.org/10.1021/acs.analchem.5b03419.

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Alvarez S, Hicks LM. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res. 2012;11(1):487–501. https://doi.org/10.1021/pr2008225.

    Article  CAS  PubMed  Google Scholar 

  40. Xie F, Liu T, Qian W-J, Petyuk VA, Smith RD. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–9. https://doi.org/10.1074/jbc.R110.199703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shadforth IP, Dunkley TPJ, Lilley KS, Bessant C. i-Tracker: for quantitative proteomics using iTRAQ™. BMC Genomics. 2005;6(1):145. https://doi.org/10.1186/1471-2164-6-145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee J, Soper SA, Murray KK. Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS. Analyst. 2009;134(12):2426–33. https://doi.org/10.1039/B916556H.

    Article  CAS  PubMed  Google Scholar 

  43. Mouradian S. Lab-on-a-chip: applications in proteomics. Curr Opin Chem Biol. 2002;6(1):51–6. https://doi.org/10.1016/S1367-5931(01)00280-0.

    Article  CAS  PubMed  Google Scholar 

  44. Slovakova M, Minc N, Bilkova Z, Smadja C, Faigle W, Fütterer C, Taverna M, Viovy J-L. Use of self assembled magnetic beads for on-chip protein digestion. Lab Chip. 2005;5(9):935–42. https://doi.org/10.1039/B504861C.

    Article  CAS  PubMed  Google Scholar 

  45. Seok H-J, Hong M-Y, Kim Y-J, Han M-K, Lee D, Lee J-H, Yoo J-S, Kim H-S. Mass spectrometric analysis of affinity-captured proteins on a dendrimer-based immunosensing surface: investigation of on-chip proteolytic digestion. Anal Biochem. 2005;337(2):294–307. https://doi.org/10.1016/j.ab.2004.10.042.

    Article  CAS  PubMed  Google Scholar 

  46. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63. https://doi.org/10.1038/nrm3722.

    Article  CAS  PubMed  Google Scholar 

  47. Albalat A, Stalmach A, Bitsika V, Siwy J, Schanstra JP, Petropoulos AD, Vlahou A, Jankowski J, Persson F, Rossing P, Jaskolla TW, Mischak H, Husi H. Improving peptide relative quantification in MALDI-TOF MS for biomarker assessment. Proteomics. 2013;13(20):2967–75. https://doi.org/10.1002/pmic.201300100.

    Article  CAS  PubMed  Google Scholar 

  48. Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49(7):1041–4. https://doi.org/10.1373/49.7.1041.

    Article  CAS  PubMed  Google Scholar 

  49. Taylor AJ, Dexter A, Bunch J. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal Chem. 2018;90(9):5637–45. https://doi.org/10.1021/acs.analchem.7b05005.

    Article  CAS  PubMed  Google Scholar 

  50. Li G, Cao Q, Liu Y, DeLaney K, Tian Z, Moskovets E, Li L. Characterizing and alleviating ion suppression effects in atmospheric pressure matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom. 2019;33(4):327–35. https://doi.org/10.1002/rcm.8358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Villarreal JC, Williams S, Egatz-Gomez A, Coleman P, Nedelkov D, Sierks MR, Ros A. Alzheimer's disease specific markers detected with microfluidic MALDI mass spectrometry (MIMAS). In 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017(pp. 1287–1288). Chemical and Biological Microsystems Society. 2020.

  52. Villarreal JC, Egatz-Gomez A, Liu J, Ros R, Coleman PD, Ros A. Amyloid β analysis from microdissected brain cells using microfluidics and MALDI mass spectrometry. In MicroTAS 2020 - 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences (pp. 711–712). Chemical and Biological Microsystems Society. 2020.

  53. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17(5):337–66. https://doi.org/10.1002/(SICI)1098-2787(1998)17:5.

    Article  CAS  Google Scholar 

  54. Rechthaler J, Pittenauer E, Schaub TM, Allmaier G. Detection of amine impurity and quality assessment of the MALDI matrix α-cyano-4-hydroxy-cinnamic acid for peptide analysis in the amol range. J Am Soc Mass Spectrom. 2013;24(5):701–10. https://doi.org/10.1007/s13361-013-0614-0.

    Article  CAS  PubMed  Google Scholar 

  55. Demeure K, Quinton L, Gabelica V, De Pauw E. Rational selection of the optimum MALDI matrix for top-down proteomics by in-source decay. Anal Chem. 2007;79(22):8678–85. https://doi.org/10.1021/ac070849z.

    Article  CAS  PubMed  Google Scholar 

  56. Kussmann M, Nordhoff E, Rahbek-Nielsen H, Haebel S, Rossel-Larsen M, Jakobsen L, Gobom J, Mirgorodskaya E, Kroll-Kristensen A, Palm‖ L, Roepstorff P,. Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom. 1997;32(6):593–601. https://doi.org/10.1002/(SICI)1096-9888(199706)32:6.

    Article  CAS  Google Scholar 

  57. Cohen SL, Chait BT. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem. 1996;68(1):31–7. https://doi.org/10.1021/ac9507956.

    Article  CAS  PubMed  Google Scholar 

  58. Ng HT, Fang A, Huang L, Li SFY. Protein microarrays on ITO surfaces by a direct covalent attachment scheme. Langmuir. 2002;18(16):6324–9. https://doi.org/10.1021/la0255828.

    Article  CAS  Google Scholar 

  59. Tajima N, Takai M, Ishihara K. Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity. Anal Chem. 2011;83(6):1969–76. https://doi.org/10.1021/ac1026786.

    Article  CAS  PubMed  Google Scholar 

  60. Trilling AK, Beekwilder J, Zuilhof H. Antibody orientation on biosensor surfaces: a minireview. Analyst. 2013;138(6):1619–27. https://doi.org/10.1039/C2AN36787D.

    Article  CAS  PubMed  Google Scholar 

  61. Pei Z, Anderson H, Myrskog A, Dunér G, Ingemarsson B, Aastrup T. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. Anal Biochem. 2010;398(2):161–8. https://doi.org/10.1016/j.ab.2009.11.038.

    Article  CAS  PubMed  Google Scholar 

  62. Glass NR, Tjeung R, Chan P, Yeo LY, Friend JR. Organosilane deposition for microfluidic applications. Biomicrofluidics. 2011;5(3):036501. https://doi.org/10.1063/1.3625605.

    Article  CAS  PubMed Central  Google Scholar 

  63. Fiddes LK, Chan HKC, Lau B, Kumacheva E, Wheeler AR. Durable, region-specific protein patterning in microfluidic channels. Biomaterials. 2010;31(2):315–20. https://doi.org/10.1016/j.biomaterials.2009.09.040.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Lai H-H, Bachman M, Sims CE, Li GP, Allbritton NL. Covalent micropatterning of poly(dimethylsiloxane) by photografting through a mask. Anal Chem. 2005;77(23):7539–46. https://doi.org/10.1021/ac0509915.

    Article  CAS  PubMed  Google Scholar 

  65. Sonker M, Parker EK, Nielsen AV, Sahore V, Woolley AT. Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers. Analyst. 2017;143(1):224–31. https://doi.org/10.1039/c7an01357d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barré FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. Anal Chem. 2019;91(16):10840–8. https://doi.org/10.1021/acs.analchem.9b02495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zubair F. MALDI mass spectrometry based proteomics for drug discovery & development. Drug Discov Today. 2021. https://doi.org/10.1016/j.ddtec.2021.09.002.

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by National Institute on Aging of the National Institute of Health under Award Number R21AG067488. We also thank Dr. Mouneimne (UofA Cancer Center) for sharing MCF-7 cells and acknowledge the ASU MS Core Facility for the mass spectrometry use. BioRender was used for the creation of several figures in this manuscript. JCV acknowledges the partial financial support by CONACYT through a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Ros.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 848 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz Villarreal, J., Kruithoff, R., Egatz-Gomez, A. et al. MIMAS: microfluidic platform in tandem with MALDI mass spectrometry for protein quantification from small cell ensembles. Anal Bioanal Chem 414, 3945–3958 (2022). https://doi.org/10.1007/s00216-022-04038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04038-y

Keywords

Navigation