Skip to main content
Log in

Distinguish oral-source VOCs and control their potential impact on breath biomarkers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

By means of glass bottle sampling followed by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) technique, the change characteristics of volatile organic compounds (VOCs) in breaths, between before gargling and after gargling, were investigated, respectively, in 41 healthy subjects and 50 esophageal cancer patients. Using an untargeted strategy, 143 VOC chromatographic peaks were enrolled in the statistical analysis. Based on the orthogonal partial least squares discriminant analysis (OPLS-DA), the VOC variations after gargling for each breath test group were obtained according to the combined criteria of variable importance in projection (VIP > 1.5), Wilcoxon signed-rank test (P < 0.05), and fold change (FC > 2.0). When gargled, the levels of indole, phenol, 1-propanol, and p-cresol in the breath of healthy people decreased; meanwhile, for esophageal cancer patients, the declined VOCs in breath were indole, phenol, dimethyl disulfide, and p-cresol. Particularly, these substances were previously reported as breath biomarkers in some diseases such as esophageal, gastric, thyroid, breast, oral, and lung cancers, as well as certain non-cancer disorders. The present work indicates that expiratory VOCs involve the prominent oral cavity source, and in the breath biomarkers study, the potential impact that originates from oral volatiles should be considered. In view of the present results, it is also proposed that gargle pretreatment could eliminate possible interference from the oral cavity VOCs that might benefit breath biomarker investigation.

Graphical abstract

Gargle pretreatment helps to distinguish oral-source VOCs and control their potential impact on breath biomarkers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Best LM, Takwoingi Y, Siddique S, Selladurai A, Gandhi A, Low B, Yaghoobi M, Gurusamy KS. Non-invasive diagnostic tests for Helicobacter pylori infection. Cochrane Db Syst Rev. 2018;3(3):CD012080.

    Google Scholar 

  2. Harnan SE, Essat M, Gomersall T, Tappenden P, Pavord I, Everard M, Lawson R. Exhaled nitric oxide in the diagnosis of asthma in adults: a systematic review. Clin Exp Allergy. 2017;47(3):410–29.

    Article  CAS  PubMed  Google Scholar 

  3. Locatelli M, Tartaglia A, Ulusoy HI, Ulusoy S, Savini F, Rossi S, Santavenere F, Merone GM, Bassotti E, D'Ovidio C, Rosato E, Furton KG, Kabir A. Fabric-Phase sorptive membrane array as a noninvasive in vivo sampling device for human exposure to different compounds. Anal Chem. 2021;93(4):1957–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar S, Huang J, Abbassi-Ghadi N, Španěl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal Chem. 2013;85(12):6121–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zou X, Zhou WZ, Lu Y, Shen CY, Hu ZT, Wang HZ, Jiang HH, Chu YN. Exhaled gases online measurements for esophageal cancer patients and healthy people by proton transfer reaction mass spectrometry. J Gastroenterol Hepatol. 2016;31(11):1837–43.

    Article  CAS  PubMed  Google Scholar 

  6. Sun XH, Shao K, Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal Bioanal Chem. 2016;408(11):2759–80.

    Article  CAS  PubMed  Google Scholar 

  7. Wang TS, Pysanenko A, Dryahina K, Spaněl P, Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J Breath Res. 2008;2(3):037013.

    Article  PubMed  Google Scholar 

  8. Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS. Unravelling the potential of salivary volatile metabolites in oral diseases. A Review Molecules. 2020;25(13):3098.

    Article  CAS  Google Scholar 

  9. Roslund K, Lehto M, Pussinen P, Groop PH, Halonen L, Metsälä M. On-line profiling of volatile compounds produced in vitro by pathogenic oral bacteria. J Breath Res. 2019;14(1):016010.

    Article  PubMed  Google Scholar 

  10. Li BZ, Zou X, Wang HM, Lu Y, Shen CY, Chu YN. Standardization study of expiratory conditions for on-line breath testing by proton transfer reaction mass spectrometry. Anal Biochem. 2019;581:113344.

    Article  CAS  PubMed  Google Scholar 

  11. Vadhwana B, Belluomo I, Boshier PR, Pavlou C, Španěl P, Hanna GB. Impact of oral cleansing strategies on exhaled volatile organic compound levels. Rapid Commun Mass Spectrom. 2020;34(9):e8706.

    Article  CAS  PubMed  Google Scholar 

  12. Lu Y, Niu WQ, Zou X, Shen CY, Xia L, Huang CQ, Wang HZ, Jiang HH, Chu YN. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites. J Chromatogr A. 2017;1496:20–4.

    Article  CAS  PubMed  Google Scholar 

  13. Chu YJ, Zhou JJ, Ge DL, Lu Y, Zou X, Xia L, Huang CQ, Shen CY, Chu YN. Variable VOCs in plastic culture flasks and their potential impact on cell volatile biomarkers. Anal Bioanal Chem. 2020;412(22):5397–408.

    Article  CAS  PubMed  Google Scholar 

  14. Vietro DN, Aresta A, Rotelli MT, Zambonin C, Lippolis C, Picciariello A, Altomare DF. Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. J Pharm Biomed Anal. 2020;180:113055.

    Article  PubMed  Google Scholar 

  15. de Lacy CB, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1):014001.

    Article  Google Scholar 

  16. Milanowski M, Pomastowski P, Ligor T, Buszewski B. Saliva - volatile biomarkers and profiles. Crit Rev Anal Chem. 2017;47(3):251–66.

    Article  CAS  PubMed  Google Scholar 

  17. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–24.

    Article  CAS  PubMed  Google Scholar 

  18. Van den Velde S, Nevens F, Van Hee P, van Steenberghe D, Quirynen M. GC-MS analysis of breath odor compounds in liver patients. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875(2):344–8.

    Article  Google Scholar 

  19. Codipilly D, Kleinberg I. Generation of indole/skatole during malodor formation in the salivary sediment model system and initial examination of the oral bacteria involved. J Breath Res. 2008;2(1):017017.

    Article  CAS  PubMed  Google Scholar 

  20. Imamura T. Influences of amino acids on the phenol and indole production of salivary microorganisms. Shigaku. 1982;70(1):21–35.

    CAS  PubMed  Google Scholar 

  21. Bone E, Tamm A, Hill M. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr. 1976;29(12):1448–54.

    Article  CAS  PubMed  Google Scholar 

  22. Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. Fems Microbiol Ecol. 2018;94(9):fiy125.

    Article  CAS  PubMed Central  Google Scholar 

  23. Claus D, Geypens B, Ghoos Y, Rutgeerts P, Ghyselen J, Hoshi K, Delanghe G. Oral malodor, assessed by closed-loop, gas chromatography, and ion-trap technology. J High Resol Chromatogr. 1997;20(2):94–8.

    Article  CAS  Google Scholar 

  24. Turner C, Spanel P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry. SIFT-MS. Physiol Meas. 2006;27(4):321–37.

    Article  PubMed  Google Scholar 

  25. Al-Kateb H, de Lacy CB, Ratcliffe N. An investigation of volatile organic compounds from the saliva of healthy individuals using headspace-trap/GC-MS. J Breath Res. 2013;7(3):036004.

    Article  CAS  PubMed  Google Scholar 

  26. Koureas M, Kirgou P, Amoutzias G, Hadjichristodoulou C, Gourgoulianis K, Tsakalof A. Target analysis of volatile organic compounds in exhaled breath for lung cancer discrimination from other pulmonary diseases and healthy persons. Metabolites. 2020;10(8):317.

    Article  CAS  PubMed Central  Google Scholar 

  27. van den Velde S, Quirynen M, van Hee P, van Steenberghe D. Halitosis associated volatiles in breath of healthy subjects. J Chromatogr B Anal Technol Biomed Life Sci. 2007;853(1-2):54–61.

    Article  Google Scholar 

  28. Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis--focus on volatile organic compounds. Clin Chim Acta. 2004;347(1-2):25–39.

    Article  CAS  PubMed  Google Scholar 

  29. Van den Velde S, van Steenberghe D, Van Hee P, Quirynen M. Detection of odorous compounds in breath. J Dent Res. 2009;88(3):285–9.

    Article  PubMed  Google Scholar 

  30. Saad S, Hewett K, Greenman J. Effect of mouth-rinse formulations on oral malodour processes in tongue-derived perfusion biofilm model. J Breath Res. 2012;6(1):016001.

    Article  CAS  PubMed  Google Scholar 

  31. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, Jacobs EJ, Gapstur SM, Hayes RB, Ahn J. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77(23):6777–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar S, Huang J, Abbassi-Ghadi N, Mackenzie HA, Veselkov KA, Hoare JM, Lovat LB, Španěl P, Smith D, Hanna GB. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262(6):981–90.

    Article  PubMed  Google Scholar 

  33. Markar SR, Wiggins T, Antonowicz S, Chin ST, Romano A, Nikolic K, Evans B, Cunningham D, Mughal M, Lagergren J, Hanna GB. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer. JAMA Oncol. 2018;4(7):970–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adam ME, Fehervari M, Boshier PR, Chin ST, Lin GP, Romano A, Kumar S, Hanna GB. Mass-spectrometry analysis of mixed-breath, isolated-bronchial-breath, and gastric-endoluminal-air volatile fatty acids in esophagogastric cancer. Anal Chem. 2019;91(5):3740–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hong Y, Che XX, Su HB, Mai ZB, Huang ZX, Huang WB, Chen W, Liu SL, Gao W, Zhou Z, Tan GB, Li X. Exhaled breath analysis using on-line preconcentration mass spectrometry for gastric cancer diagnosis. J Mass Spectrom. 2021;56(4):e4588.

    Article  CAS  PubMed  Google Scholar 

  36. Lamote K, Brinkman P, Vandermeersch L, Vynck M, Sterk PJ, Van Langenhove H, Thas O, Van Cleemput J, Nackaerts K, van Meerbeeck JP. Breath analysis by gas chromatography-mass spectrometry and electronic nose to screen for pleural mesothelioma: a cross-sectional case-control study. Oncotarget. 2017;8(53):91593–602.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guo L, Wang CS, Chi CJ, Wang XY, Liu SS, Zhao W, Ke CF, Xu GW, Li EY. Exhaled breath volatile biomarker analysis for thyroid cancer. Transl Res. 2015;166(2):188–95.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Guo L, Qiu ZZ, Lv Y, Chen GM, Li EY. Early diagnosis of breast cancer from exhaled breath by gas chromatography-mass spectrometry (GC/MS) analysis: a prospective cohort study. J Clin Lab Anal. 2020;34(12):e23526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Gilio A, Catino A, Lombardi A, Palmisani J, Facchini L, Mongelli T, Varesano N, Bellotti R, Galetta D, de Gennaro G, Tangaro S. Breath analysis for early detection of malignant pleural mesothelioma: volatile organic compounds (VOCs) determination and possible biochemical pathways. Cancers. 2020;12(5):1262.

    Article  PubMed Central  Google Scholar 

  40. Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, Ligor T, Filipiak W, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Haidenberger A, Buszewski B, Miekisch W, Schubert J, Amann A. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer. 2009;9:348.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rudnicka J, Kowalkowski T, Ligor T, Buszewski B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(30):3360–6.

    Article  CAS  Google Scholar 

  42. Ulanowska A, Kowalkowski T, Trawińska E, Buszewski B. The application of statistical methods using VOCs to identify patients with lung cancer. J Breath Res. 2011;5(4):046008.

    Article  PubMed  Google Scholar 

  43. Buszewski B, Ulanowska A, Kowalkowski T, Cieśliński K. Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. Clin Chem Lab Med. 2012;50(3):573–81.

    Article  CAS  Google Scholar 

  44. Ma HY, Li X, Chen JM, Wang HJ, Cheng TT, Chen K, Xu SF. Analysis of human breath samples of lung cancer patients and healthy controls with solid-phase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC × GC). Anal Methods. 2014;6(17):6841.

    Article  CAS  Google Scholar 

  45. Rudnicka J, Walczak M, Kowalkowski T, Jezierski T, Buszewski B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs. Sens Actuators B. 2014;202:615–21.

    Article  CAS  Google Scholar 

  46. Sakumura Y, Koyama Y, Tokutake H, Hida T, Sato K, Itoh T, Akamatsu T, Shin W. Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors. 2017;17(2):287.

    Article  PubMed Central  Google Scholar 

  47. Hartwig S, Raguse JD, Pfitzner D, Preissner R, Paris S, Preissner S. Volatile organic compounds in the breath of oral squamous cell carcinoma patients: a pilot study. Otolaryngol Head Neck Surg. 2017;157(6):981–7.

    Article  PubMed  Google Scholar 

  48. Dadamio J, Van den Velde S, Laleman W, Van Hee P, Coucke W, Nevens F, Quirynen M. Breath biomarkers of liver cirrhosis. J Chromatogr B Anal Technol Biomed Life Sci. 2012;905:17–22.

    Article  CAS  Google Scholar 

  49. Martinez-Lozano Sinues P, Meier L, Berchtold C, Ivanov M, Sievi N, Camen G, Kohler M, Zenobi R. Breath analysis in real time by mass spectrometry in chronic obstructive pulmonary disease. Respiration. 2014;87(4):301–10.

    Article  PubMed  Google Scholar 

  50. Gaida A, Holz O, Nell C, Schuchardt S, Lavae-Mokhtari B, Kruse L, Boas U, Langejuergen J, Allers M, Zimmermann S, Vogelmeier C, Koczulla AR, Hohlfeld JM. A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD. J Breath Res. 2016;10(2):026006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21876176, 21777163, 21477132, 81401756, 21705152, 22076190); the Youth Innovation Promotion Association, Chinese Academy of Sciences (2019432); the President Foundation of Hefei Institute of Physical Sciences of Chinese Academy of Sciences (YZJJZX202009); the Joint Fund between the Second Affiliated Hospital of Anhui Medical University and the Center of Medical Physics and Technology of Hefei Institute of Physical Sciences of Chinese Academy of Sciences (LHJJ2020006); the Key Program of 13th Five Year Plan, CASHIPS (KP-2017-25); and the Anhui Provincial Key R&D Program (202104d07020003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Lu or Yannan Chu.

Ethics declarations

Ethics approval

This breath test project passed the check by the Ethical Committee of the Hefei Institutes of Physical Science, Chinese Academy of Science (approval number: Y-2019-19). All the gargle and breath tests were conducted after informed consent by the cancer patients and their accompanying family members as healthy subjects.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Zhou, J., Chu, Y. et al. Distinguish oral-source VOCs and control their potential impact on breath biomarkers. Anal Bioanal Chem 414, 2275–2284 (2022). https://doi.org/10.1007/s00216-021-03866-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03866-8

Keywords

Navigation