Skip to main content
Log in

A novel graphene oxide/chitosan foam incorporated with metal–organic framework stationary phase for simultaneous enrichment of glycopeptide and phosphopeptide with high efficiency

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel hydrophilic porous biocomposite was fabricated by incorporating graphene oxide (GO) @chitosan (CS) foam substrate (GO@CS@ZIF-8 foam) with ZIF-8 crystals in situ via a facile stirring method for simultaneous enrichment of glycopeptides and phosphopeptides from complex biological samples. The experimental results demonstrated that GO@CS@ZIF-8 foam exhibited favorable specificity for simultaneous enrichment of N-glycopeptides and phosphopeptides under the same condition for HRP and β-casein tryptic digest mixtures. The novel material was further applied to enriching both glycopeptides and phosphopeptides simultaneously from 4 μL complex human serum, and 423 N-glycopeptides and 40 phosphopeptides corresponding to 133 glycoproteins and 29 phosphoproteins were identified, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–56.

    Article  CAS  PubMed  Google Scholar 

  2. Nilsson J, Rüetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, Larson G. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat Methods. 2009;6(11):809–11.

    Article  CAS  PubMed  Google Scholar 

  3. Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009;139:1229–41.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perego P, Gatti L, Beretta GL. The ABC of glycosylation. Nat Rev Cancer. 2010;10(7):523.

    Article  CAS  PubMed  Google Scholar 

  5. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø, Gjertsen BT, Nolan GP. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 2004;118:217–28.

    Article  CAS  PubMed  Google Scholar 

  6. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  CAS  PubMed  Google Scholar 

  7. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011;469:564–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reis CA, Osorio H, Silva L, Gomes C, David L. Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol. 2010;63:322–9.

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Shi X, Duke RM, Ruse CI, Dai N, Taron CH, Samuelson JC. An engineered high affinity Fbs1 carbohydrate binding protein for selective capture of N-glycans and N-glycopeptides. Nat Commun. 2017;8:15487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang H, Shi T, Qian WJ, Liu T, Kagan J, Srivastava S, Smith RD, Rodland KD, Camp DG 2nd. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification. Expert Rev Proteomics. 2016;13(1):99–114.

    Article  PubMed  Google Scholar 

  11. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312:212–7.

    Article  CAS  PubMed  Google Scholar 

  12. Buchberger A, Yu Q, Li L. Advances in mass spectrometric tools for probing neuropeptides. Annu Rev Anal Chem (Palo Alto Calif). 2015;8:485–509.

    Article  CAS  Google Scholar 

  13. Suttapitugsakul S, Sun F, Wu R. Recent advances in glycoproteomic analysis by mass spectrometry. Anal Chem. 2020;92(1):267–91.

    Article  CAS  PubMed  Google Scholar 

  14. Kong S, Zhang Q, Yang L, Huang Y, Liu M, Yan G, Zhao H, Wu M, Zhang X, Yang P, Cao W. Effective enrichment strategy using boronic acid-functionalized mesoporous graphene-silica composites for intact N- and O-linked glycopeptide analysis in human serum. Anal Chem. 2021;93(17):6682–91.

    Article  CAS  PubMed  Google Scholar 

  15. Luo B, Chen Q, He J, Li ZY, Yu LZ, Lan F, Wu Y. Boronic acid-functionalized magnetic metal-organic frameworks via a dual-ligand strategy for highly efficient enrichment of phosphopeptides and glycopeptides. ACS Sustain Chem Eng. 2019;7:6043–52.

    Article  CAS  Google Scholar 

  16. Bie Z, Chen Y, Li H, Wu R, Liu Z. Off-line hyphenation of boronate affinity monolith-based extraction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for efficient analysis of glycoproteins/glycopeptides. Anal Chim Acta. 2014;834:1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Bai H, Pan Y, Qi L, Liu L, Zhao X, Dong H, Cheng X, Qin W, Wang X. Development a hydrazide-functionalized thermosensitive polymer based homogeneous system for highly efficient N-glycoprotein/glycopeptide enrichment from human plasma exosome. Talanta. 2018;186:513–20.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Yu M, Zhang Y, Wang C, Lu H. Hydrazide functionalized core-shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides. ACS Appl Mater Interfaces. 2014;6(10):7823–32.

    Article  CAS  PubMed  Google Scholar 

  19. Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protoc. 2007;2(2):334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Fu D, Yu L, Xiao Y, Peng X, Liang X. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. J Chromatogr A. 2016;1455:147–55.

    Article  CAS  PubMed  Google Scholar 

  21. Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol. 2003;21(6):667–72.

    Article  CAS  PubMed  Google Scholar 

  22. Loo D, Jones A, Hill MM. Lectin magnetic bead array for biomarker discovery. J Proteome Res. 2010;9(10):5496–500.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Sheng Q, Hong Y, Lan M. Hydrophilic nanocomposite functionalized by carrageenan for the specific enrichment of glycopeptides. Anal Chem. 2019;91(6):4047–54.

    Article  CAS  PubMed  Google Scholar 

  24. Xia C, Jiao F, Gao F, Wang H, Lv Y, Shen Y, Zhang Y, Qian X. Two-dimensional MoS2-based zwitterionic hydrophilic interaction liquid chromatography material for the specific enrichment of glycopeptides. Anal Chem. 2018;90(11):6651–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Huang Y, Jiang B, Hu Y, Xie J, Gao X, Jia B, Shen H, Zhang W, Yang P. In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides. Anal Chem. 2018;90(12):7357–63.

    Article  CAS  PubMed  Google Scholar 

  26. Sun N, Wang J, Yao J, Deng C. Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked glycopeptide. Anal Chem. 2017;89(3):1764–71.

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Sun N, Deng C. Construction of magnetic covalent organic frameworks with inherent hydrophilicity for efficiently enriching endogenous glycopeptides in human saliva. ACS Appl Mater Interfaces. 2020;12(8):9814–23.

    Article  CAS  PubMed  Google Scholar 

  28. Lu J, Luan J, Li Y, He X, Chen L, Zhang Y. Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A. 2020;1615:460754.

    Article  CAS  PubMed  Google Scholar 

  29. Quan Q, Feng J, Lui LT, Shi T, Chu IK. Phosphoproteome of crab-eating macaque cerebral cortex characterized through multidimensional reversed-phase liquid chromatography/mass spectrometry with tandem anion/cation exchange columns. J Chromatogr A. 2017;1498:196–206.

    Article  CAS  PubMed  Google Scholar 

  30. Qing G, Lu Q, Li X, Liu J, Ye M, Liang X, Sun T. Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nat Commun. 2017;8(1):461.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu Z, Wang Y, Yao Y, Fang Z, Miao QR, Ye M. Quantitative proteomic and phosphoproteomic studies reveal novel 5-fluorouracil resistant targets in hepatocellular carcinoma. J Proteomics. 2019;208:103501.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Xia C, Fan Z, Jiao F, Gao F, Xie Y, He Z, Zhang W, Zhang Y, Shen Y, Qian X, Qin W. Novel two-dimensional MoS2-Ti4+ nanomaterial for efficient enrichment of phosphopeptides and large-scale identification of histidine phosphorylation by mass spectrometry. Anal Chem. 2020;92(19):12801–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hong Y, Zhan Q, Zheng Y, Pu C, Zhao H, Lan M. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti4+: a dual-purpose affinity material for highly efficient enrichment of glycopeptides/phosphopeptides. Talanta. 2019;197:77–85.

    Article  CAS  PubMed  Google Scholar 

  34. Zheng H, Jia J, Li Z, Jia Q. Bifunctional magnetic supramolecular-organic framework: a nanoprobe for simultaneous enrichment of glycosylated and phosphorylated peptides. Anal Chem. 2020;92(3):2680–9.

    Article  CAS  PubMed  Google Scholar 

  35. Su J, He X, Chen L, Zhang K. Adenosine phosphate functionalized magnetic mesoporous graphene oxide nanocomposite for highly selective enrichment of phosphopeptides. ACS Sustain Chem Eng. 2018;6:2188–96.

    Article  CAS  Google Scholar 

  36. Sun H, Zhang Q, Zhang L, Zhang W, Zhang L. Facile preparation of molybdenum (VI) oxide—modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. J Chromatogr A. 2017;1521:36–43.

    Article  CAS  PubMed  Google Scholar 

  37. Tang LA, Wang J, Lim TK, Bi X, Lee WC, Lin Q, Chang YT, Lim CT, Loh KP. High-performance graphene-titania platform for detection of phosphopeptides in cancer cells. Anal Chem. 2012;84(15):6693–700.

    Article  CAS  PubMed  Google Scholar 

  38. Ma WF, Zhang Y, Li LL, You LJ, Zhang P, Zhang YT, Li JM, Yu M, Guo J, Lu HJ, Wang CC. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano. 2012;6(4):3179–88.

    Article  CAS  PubMed  Google Scholar 

  39. Li DP, Zhang JH, Xie GS, Ji FF, Shao XJ, Zhu L, Cai ZW. A dual-zwitterion functionalized ultra-hydrophilic metal-organic framework with ingenious synergy for enhanced enrichment of glycopeptides. Chem Commun. 2019;55(93):13967–70.

    Article  CAS  Google Scholar 

  40. Wu JN, Jin XT, Zhu CH, Yan YH, Ding CF, Tang KQ. Gold nanoparticle-glutathione functionalized MOFs as hydrophilic materials for the selective enrichment of glycopeptides. Talanta. 2021;228:122263.

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Gong JL, Zeng GM, Zhang P, Song B, Cao WC, Liu HY, Huan SY. Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. J Colloid Interface Sci. 2018;527:267–79.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y. Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci. 2021;101:177–88.

    Article  Google Scholar 

  43. Pan Y, Zhang C, Xiao R, Zhang L, Zhang W. Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides. Anal Chim Acta. 2021;1158:338412.

    Article  CAS  PubMed  Google Scholar 

  44. Mompó-Roselló Ó, Vergara-Barberán M, Lerma-García MJ, et al. Boronate affinity sorbents based on thiol-functionalized polysiloxane-polymethacrylate composite materials in syringe format for selective extraction of glycopeptides. [J]. Microchem J. 2021;164:106018.

    Article  Google Scholar 

  45. Sheng Q, Li J, Chen Y, Liang X, Lan M. Hydrophilic graphene oxide-dopamine-cationic cellulose composites and their applications in N-glycopeptides enrichment. Talanta. 2021;226:122112.

    Article  CAS  PubMed  Google Scholar 

  46. Lin XR, Kwon E, Hung C, Huang CW, Oh WD, Lin KA. Co3O4 nanocube-decorated nitrogen-doped carbon foam as an enhanced 3-dimensional hierarchical catalyst for activating Oxone to degrade sulfosalicylic acid. J Colloid Interface Sci. 2021;584:749–59.

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Li J, Wang Y, Gao M, Zhang X, Yang P. Development of versatile metal-organic framework functionalized magnetic graphene core-shell biocomposite for highly specific recognition of glycopeptides. ACS Appl Mater Interfaces. 2016;8(41):27482–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ma R, Hu J, Cai Z, Ju H. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides. Nanoscale. 2014;6(6):3150–6.

    Article  CAS  PubMed  Google Scholar 

  49. Gao CH, Bai J, He YT, Zheng Q, Ma WD, Lin ZA. Post-synthetic modification of phenylboronic acid-functionalized magnetic covalent organic frameworks for specifific enrichment of N-linked glycopeptides. ACS Sustain Chem Eng. 2019;7:18926–34.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. U20A20121 and 61971248), Key Research and Development Program of Zhejiang Province (Grant No. 2020C03064), Science and Technology Major Project of Ningbo (Grant No. 2018B10075), Open Funds of Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province (Grant No. KFJJ-202102), and sponsored by the K.C. Wong Magna Fund in Ningbo University (Grant No. xkzwl1507).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqing Gao, Jiancheng Yu or Keqi Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1914 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Gao, W., Yang, J. et al. A novel graphene oxide/chitosan foam incorporated with metal–organic framework stationary phase for simultaneous enrichment of glycopeptide and phosphopeptide with high efficiency. Anal Bioanal Chem 414, 2251–2263 (2022). https://doi.org/10.1007/s00216-021-03861-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03861-z

Keywords

Navigation