Skip to main content
Log in

Size and macromolecule stabilizer–dependent performance of gold colloids in immuno-PCR

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles (GNPs) are well-documented for their size and surface chemistry–dependent electronic and optical properties that are extensively utilized to develop highly sensitive immunoassays. GNP-based immuno-polymerase chain reaction (immuno-PCR) is especially interesting due to the facile loading of biomolecules on the surface of GNP probes and has been utilized to develop analyte-specific assays. In this study, the role of size and surface chemistry of GNPs is explored in detail to develop a highly sensitive and reproducible immuno-PCR assay for specific detection of biotinylated analytes. Our results indicate that smaller-sized gold nanoparticles outperform the larger ones in terms of their sensitivity in immuno-PCR assay and show superior loading of proteins and oligonucleotides on the surface of nanoparticles. Furthermore, the role of different macromolecular stabilizers (such as polyethylene glycol (PEG), bovine serum albumin (BSA), and PEGylated BSA) was compared to optimize the loading of biomolecules and to improve the signal-to-noise ratio of GNP probes. mPEG-BSA-functionalized GNP probes of 15 nm were found to be highly sensitive at low concentrations of analytes and significantly (~ 30 fold) improve the limit of detection of analytes in comparison with ELISA assay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Assumpção ALFV. da Silva RC. Immuno-PCR in cancer and non-cancer related diseases: a review. Vet Q. 2016;36:63–70.

  2. Chang L. Li J. Wang L. Immuno-PCR: an ultrasensitive immunoassay for biomolecular detection. Anal Chim Acta. 2016;910:12–24.

  3. Dahiya B, Mehta PK. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays. Anal Biochem. 2019;587:13444. https://doi.org/10.1016/j.ab.2019.113444.

    Article  CAS  Google Scholar 

  4. Yang GX, Zhuang HS, Chen HY, Ping XY, Bu D. A sensitive immunosorbent bio-barcode assay based on real-time immuno-PCR for detecting 3,4,3’,4’-tetrachlorobiphenyl. Anal Bioanal Chem. 2014;406:1693–700.

    Article  CAS  Google Scholar 

  5. Gaudet D, Nilsson D, Lohr T, Sheedy C. Development of a real-time immuno-PCR assay for the quantification of 17β-estradiol in water. J Environ Sci Health-Part B Pestic Food Contam Agric Wastes. 2015;50:683–90.

    Article  CAS  Google Scholar 

  6. Zhang X, Zhuang H. Development of an ultrasensitive PCR assay for polycyclic musk determination in fish. Food Addit Contam-Part A Chem Anal Control Expo Risk Assess. 2018;35:950–8.

    Article  CAS  Google Scholar 

  7. Hendrickson ER, Truby TMH, Joerger RD, Majarian WR, Ebersole RC. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 1995;23:522–9.

    Article  CAS  Google Scholar 

  8. Wang Y. Jin M. Chen G. Cui X. Zhang Y. Li M. Liao Y. Zhang X. Qin G. Yan F. Abd El-Aty AM. Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res. 2019;20:23–32.

  9. Kim EY, Stanton J, Korber BTM, Krebs K, Bogdan D, Kunstman K, Wu S, Phair JP, Mirkin CA, Wolinsky SM. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method. Nanomedicine. 2008;3:293–303.

    Article  CAS  Google Scholar 

  10. Gao L, Yang Q, Wu P, Li F. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst. 2020;145:4069–78.

    Article  CAS  Google Scholar 

  11. Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115:10575–636.

    Article  CAS  Google Scholar 

  12. Dahiya B. Sharma S. Khan, A. Kamra E. Mor P. Sheoran A. Sreenivas V. Varma-Basil M. Gupta KB. Gupta MC. Chaudhary D. Mehta, PK. Detection of mycobacterial CFP-10 (Rv3874) protein in tuberculosis patients by gold nanoparticle-based real-time immuno-PCR. Future Microbiol. 2020;15:601–12.

  13. Yin HQ, Ji CF, Yang XQ, Wang R, Yang S, Zhang HQ, Zhang JG. An improved gold nanoparticle probe-based assay for HCV core antigen ultrasensitive detection. J Virol Methods. 2017;243:142–5.

    Article  CAS  Google Scholar 

  14. Ma Z, Zhuang H. An ultrasensitive biological probe enhanced RT-IPCR assay for detecting benzo[a]pyrene in environmental samples based on the specific polyclonal antibody. Acta Biochim Biophys Sin. 2018;50:381–90.

    Article  CAS  Google Scholar 

  15. Xiansong W. Yi S. Shan J. Xuemet M. Yi Z. Combining gold nanoparticles with real-time immuno-PCR for analysis of HIV p24 antigens. 1st Int Conf Bioinforma Biomed Eng. 2007;1198–201.

  16. Perez JW, Vargis EA, Russ PK, Haselton FR, Wright DW. Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction. Anal Biochem. 2011;410:141–8.

    Article  CAS  Google Scholar 

  17. Ding YZ, Liu YS, Zhou JH, Chen HT, Wei G, Ma LN, Zhang J. A highly sensitive detection for foot-and-mouth disease virus by gold nanoparticle improved immuno-PCR. Virol J. 2011;8:1–5.

    Article  Google Scholar 

  18. Yin HQ. Jia MX. Yang S. Jing PP. Wang R. Zhang JG. Development of a highly sensitive gold nanoparticle probe-based assay for bluetongue virus detection. J Virol Methods. 2012;183:45–8.

  19. Stegurová L, Dráberová E, Bartos A, Dráber P, Řípová D, Dráber P. Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid. J Immunol Methods. 2014;406:137–42.

    Article  Google Scholar 

  20. Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: a review. Anal Chim Acta. 2021;1143:250–66.

    Article  CAS  Google Scholar 

  21. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci. 2005;102:2273–6.

    Article  CAS  Google Scholar 

  22. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology. Catal Nanotech Chem Rev. 2004;104:293–346.

    CAS  Google Scholar 

  23. Singh P. Bharti. Kumar R. Bhalla V. Gold nanoparticle triggered siloxane formation for polymerization based amplification in enzyme free visual immunoassay. Anal Chim Acta. 2019;1078:151–60.

  24. Chivers CE, Koner AL, Lowe ED, Howarth M. How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem J. 2011;435:55–63.

    Article  CAS  Google Scholar 

  25. Hermanson GT. Bioconjugate Reagents. Bioconjugate Tech. 2008:214–33.

  26. Chen L, Wei H, Guo Y, Cui Z, Zhang Z, Zhang XE. Gold nanoparticle enhanced immuno-PCR for ultrasensitive detection of Hantaan virus nucleocapsid protein. J Immunol Methods. 2009;346:64–70.

    Article  CAS  Google Scholar 

  27. Kurdekar AD, Chunduri LAA, Manohar CS, Haleyurgirisetty MK, Hewlett IK, Venkataramaniah K. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci Adv. 2018;4:1–11.

    Article  Google Scholar 

  28. Quevedo PD, Behnke T, Resch-Genger U. Streptavidin conjugation and quantification—a method evaluation for nanoparticles. Anal Bioanal Chem. 2016;408:4133–49.

    Article  CAS  Google Scholar 

  29. Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based dna detection with pcr-like sensitivity. J Am Chem Soc. 2004;126:5932–3.

    Article  CAS  Google Scholar 

  30. Lin LK, Uzunoglu A, Stanciu LA. Aminolated and thiolated peg-covered gold nanoparticles with high stability and antiaggregation for lateral flow detection of bisphenol a. Small. 2018;14:1–10.

    Google Scholar 

  31. Harrison E, Nicol JR, Macias-Montero M, Burke GA, Coulter JA, Meenan BJ, Dixon D. A comparison of gold nanoparticle surface co-functionalization approaches using polyethylene glycol (PEG) and the effect on stability, non-specific protein adsorption and internalization. Mater Sci Eng C. 2016;62:710–8.

    Article  CAS  Google Scholar 

  32. Wu R, Peng H, Zhu JJ, Jiang LP, Liu J. Attaching DNA to gold nanoparticles with a protein corona. Front Chem. 2020;8:1–9.

    Article  Google Scholar 

  33. Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-50332-8.

    Article  CAS  Google Scholar 

  34. Bolaños K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomed. 2019;14:6387–406.

    Article  Google Scholar 

  35. Hirayama K, Akashi S, Furuya M, Fukuhara K. Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and frit-FAB LC/MS. Biochem Biophys Res Commun. 1990;173:639–46.

    Article  CAS  Google Scholar 

  36. Dominguez-Medina S, Blankenburg J, Olson J, Landes CF, Link S. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain Chem Eng. 2013;1:833–42.

    Article  CAS  Google Scholar 

  37. Maddocks S. Jenkins R. Quantitative PCR: Things to consider. Understanding PCR. Elsevier, pp45–52; https://doi.org/10.1016/B978-0-12-802683-0.00004-6; 2017.

  38. Maddocks S. Jenkins R. Carrying out Q-PCR. Understanding PCR. Elsevier, pp. 53–59. https://doi.org/10.1016/B978-0-12-802683-0.00005-8; 2017.

  39. Vanzha E, Pylaev T, Khanadeev V, Konnova S, Fedorova V, Khlebtsov N. Gold nanoparticle-assisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material. RSC Adv. 2016;6:110146–54.

    Article  CAS  Google Scholar 

  40. Guan N. Li Y. Yang H. Hu P. Lu S. Ren H. Liu Z. Soo Park K. Zhou Y. Dual-functionalized gold nanoparticles probe based bio-barcode immuno-PCR for the detection of glyphosate. Food Chem. 2021;338:128133: https://doi.org/10.1016/j.foodchem.2020.128133.

Download references

Acknowledgements

The authors would like to thank Jessie Rix and Khadija Ghanam for their advice and help with immuno-PCR assays.

Funding

The authors received from MITACS Accelerate support of this grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marya Ahmed.

Ethics declarations

Ethics approval

Not applicable to the study.

Conflict of interest

M. A. and M. S. T. declare no financial or non-financial interests in this study. R. I. is the Chief Scientific executive of Sumoru Bioscience.

Source of biological materials

Not applicable for this study.

Statement on animal welfare

Not applicable to the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.52 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, M.S., Islam, R. & Ahmed, M. Size and macromolecule stabilizer–dependent performance of gold colloids in immuno-PCR. Anal Bioanal Chem 414, 2205–2217 (2022). https://doi.org/10.1007/s00216-021-03857-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03857-9

Keywords

Navigation