Skip to main content
Log in

FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Because of the pervasiveness, persistence, and toxicity of per- and polyfluoroalkyl substances (PFAS), there is growing concern over PFAS contamination, exposures, and health effects. The diversity of potential PFAS is astounding, with nearly 10,000 PFAS catalogued in databases to date (and growing). The ability to detect the thousands of known PFAS, and discover previously uncatalogued PFAS, is necessary to understand the scope of PFAS contamination and to identify appropriate remediation and regulatory solutions. Current non-targeted methods for PFAS analysis require manual curation and are time-consuming, prone to error, and not comprehensive. FluoroMatch Flow 2.0 is the first software to cover all steps of data processing for PFAS discovery in liquid chromatography–high-resolution tandem mass spectrometry samples. These steps include feature detection, feature blank filtering, exact mass matching to catalogued PFAS, mass defect filtering, homologous series detection, retention time pattern analysis, class-based MS/MS screening, fragment screening, and predicted MS/MS from SMILES structures. In addition, a comprehensive confidence level criterion is implemented to help users understand annotation certainty and integrate various layers of evidence to reduce overreporting. Applying the software to aqueous film forming foam analysis, we discovered over one thousand likely PFAS including previously unreported species. Furthermore, we were able to filter out 96% of features which were likely not PFAS. FluoroMatch Flow 2 increased coverage of likely PFAS by over tenfold compared to the previous release. This software will enable researchers to better characterize PFAS in the environment and in biological systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The final annotated excel sheets with feature intensities, annotations, homologous series groupings, etc., are available as a supplemental excel file with the online version of this manuscript. The raw Agilent “.d” files can be downloaded at: ftp://massive.ucsd.edu/MSV000086811/updates/2021-02-05_jeremykoelmel_e5b21166/raw/McDonough_AFFF_3M_ddMS2_Neg.zip

(Note use Google Chrome or Firefox, Microsoft Edge and certain other browsers are unable to download from an ftp link).

Code availability

The FluoroMatch Software platform and written and video tutorials are available at: http://innovativeomics.com/software/fluoromatch-flow-covers-entire-pfas-workflow/

References

  1. EUR-Lex - 32017R1000 - EN - EUR-Lex. https://eur-lex.europa.eu/eli/reg/2017/1000/oj. Accessed 30 Oct 2020.

  2. Synthesis paper on per and polyfluorinated chemicals - OECD. https://www.oecd.org/chemicalsafety/risk-management/synthesis-paper-on-per-and-polyfluorinated-chemicals.htm. Accessed 30 Oct 2020.

  3. Glüge J, Scheringer M, Cousins TI, DeWitt CJ, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22:2345–73. https://doi.org/10.1039/D0EM00291G.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Filipovic M, Woldegiorgis A, Norström K, Bibi M, Lindberg M, Österås A-H. Historical usage of aqueous film forming foam: a case study of the widespread distribution of perfluoroalkyl acids from a military airport to groundwater, lakes, soils and fish. Chemosphere. 2015;129:39–45. https://doi.org/10.1016/j.chemosphere.2014.09.005.

    Article  PubMed  CAS  Google Scholar 

  5. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3:344–50. https://doi.org/10.1021/acs.estlett.6b00260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Langberg HA, Breedveld GD, Grønning HM, Kvennås M, Jenssen BM, Hale SE. Bioaccumulation of fluorotelomer sulfonates and perfluoroalkyl acids in marine organisms living in aqueous film-forming foam impacted waters. Environ Sci Technol. 2019;53:10951–60. https://doi.org/10.1021/acs.est.9b00927.

    Article  PubMed  CAS  Google Scholar 

  7. Zhao S, Zhu L, Liu L, Liu Z, Zhang Y. Bioaccumulation of perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) by earthworms (Eisenia fetida) in soil. Environ Pollut. 2013;179:45–52. https://doi.org/10.1016/j.envpol.2013.04.002.

    Article  PubMed  CAS  Google Scholar 

  8. Martín J, Hidalgo F, García-Corcoles MT, Ibáñez-Yuste AJ, Alonso E, Vilchez JL, et al. Bioaccumulation of perfluoroalkyl substances in marine echinoderms: results of laboratory-scale experiments with Holothuria tubulosa Gmelin, 1791. Chemosphere. 2019;215:261–71. https://doi.org/10.1016/j.chemosphere.2018.10.037.

    Article  PubMed  CAS  Google Scholar 

  9. Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut. 2007;148:360–71. https://doi.org/10.1016/j.envpol.2006.09.021.

    Article  PubMed  CAS  Google Scholar 

  10. Munoz G, Desrosiers M, Vetter L, Vo Duy S, Jarjour J, Liu J, et al. Bioaccumulation of zwitterionic polyfluoroalkyl substances in earthworms exposed to aqueous film-forming foam impacted soils. Environ Sci Technol. 2020;54:1687–97. https://doi.org/10.1021/acs.est.9b05102.

    Article  PubMed  CAS  Google Scholar 

  11. McDonough CA, Choyke S, Ferguson PL, DeWitt JC, Higgins CP. Bioaccumulation of novel per- and polyfluoroalkyl substances in mice dosed with an aqueous film-forming foam. Environ Sci Technol. 2020;54:5700–9. https://doi.org/10.1021/acs.est.0c00234.

    Article  PubMed  CAS  Google Scholar 

  12. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expos Sci Environ Epidemiol. 2019;29:131–47. https://doi.org/10.1038/s41370-018-0094-1.

    Article  CAS  Google Scholar 

  13. Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2020. https://doi.org/10.1002/etc.4890.

  14. Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118:197–202. https://doi.org/10.1289/ehp.0901165.

    Article  PubMed  CAS  Google Scholar 

  15. Lopez-Espinosa M-J, Mondal D, Armstrong B, Bloom MS, Fletcher T. Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect. 2012;120:1036–41. https://doi.org/10.1289/ehp.1104370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009;170:1268–78. https://doi.org/10.1093/aje/kwp279.

    Article  PubMed  Google Scholar 

  17. Olsen GW, Burris JM, Burlew MM, Mandel JH. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med. 2003;45:260–70. https://doi.org/10.1097/01.jom.0000052958.59271.10.

    Article  PubMed  CAS  Google Scholar 

  18. Darrow LA, Stein CR, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environ Health Perspect. 2013;121:1207–13. https://doi.org/10.1289/ehp.1206372.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Szilagyi JT, Avula V, Fry RC. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: a potential mechanistic role for placental peroxisome proliferator–activated receptors (PPARs). Curr Environ Health Rpt. 2020;7:222–30. https://doi.org/10.1007/s40572-020-00279-0.

    Article  CAS  Google Scholar 

  20. Steenland K, Zhao L, Winquist A, Parks C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. Environ Health Perspect. 2013;121:900–5. https://doi.org/10.1289/ehp.1206449.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313–8. https://doi.org/10.1289/ehp.1306615.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shearer JJ, Callahan CL, Calafat AM, Huang W-Y, Jones RR, Sabbisetti VS, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djaa143.

  23. Grandjean P, Heilmann C, Weihe P, Nielsen F, Mogensen UB, Timmermann A, et al. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. J Immunotoxicol. 2017;14:188–95. https://doi.org/10.1080/1547691X.2017.1360968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. 2012;40:300–11. https://doi.org/10.1177/0192623311428473.

    Article  PubMed  CAS  Google Scholar 

  25. McDonough CA, Ward C, Hu Q, Vance S, Higgins CP, DeWitt JC. Immunotoxicity of an electrochemically fluorinated aqueous film-forming foam. Toxicol Sci. 2020;178:104–14. https://doi.org/10.1093/toxsci/kfaa138.

    Article  PubMed  CAS  Google Scholar 

  26. Yeung LWY, Miyake Y, Taniyasu S, Wang Y, Yu H, So MK, et al. Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China. Environ Sci Technol. 2008;42:8140–5. https://doi.org/10.1021/es800631n.

    Article  PubMed  CAS  Google Scholar 

  27. Goodrum PE, Anderson JK, Luz AL, Ansell GK. Application of a framework for grouping and mixtures toxicity assessment of PFAS: a closer examination of dose-additivity approaches. Toxicol Sci. https://doi.org/10.1093/toxsci/kfaa123.

  28. CompTox Chemicals Dashboard | PFASSTRUCT Chemicals. https://comptox.epa.gov/dashboard/chemical_lists/PFASSTRUCT. Accessed 22 Jan 2021.

  29. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform. 2017;9:61. https://doi.org/10.1186/s13321-017-0247-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Koelmel JP, Paige MK, Aristizabal-Henao JJ, Robey NM, Nason SL, Stelben PJ, et al. Toward comprehensive per- and polyfluoroalkyl substances annotation using FluoroMatch software and intelligent high-resolution tandem mass spectrometry acquisition. Anal Chem. 2020;92:11186–94. https://doi.org/10.1021/acs.analchem.0c01591.

    Article  PubMed  CAS  Google Scholar 

  31. McDonough CA, Guelfo JL, Higgins CP. Measuring total PFASs in water: the tradeoff between selectivity and inclusivity. Curr Opin Environ Sci Health. 2019;7:13–8. https://doi.org/10.1016/j.coesh.2018.08.005.

    Article  PubMed  Google Scholar 

  32. Liu Y, D’Agostino L, Qu G, Jiang G, Martin J. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends Anal Chem. 2019. https://doi.org/10.1016/j.trac.2019.02.021.

  33. Bugsel B, Zwiener C. LC-MS screening of poly- and perfluoroalkyl substances in contaminated soil by Kendrick mass analysis. Anal Bioanal Chem. 2020;412:4797–805. https://doi.org/10.1007/s00216-019-02358-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nason SL, Koelmel J, Zuverza-Mena N, Stanley C, Tamez C, Bowden JA, et al. Software comparison for nontargeted analysis of PFAS in AFFF-contaminated soil. J Am Soc Mass Spectrom. 2020. https://doi.org/10.1021/jasms.0c00261.

  35. D’Agostino LA, Mabury SA. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol. 2014;48:121–9. https://doi.org/10.1021/es403729e.

    Article  PubMed  CAS  Google Scholar 

  36. Place BJ, Field JA. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol. 2012;46:7120–7. https://doi.org/10.1021/es301465n.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol. 2017;51:2047–57. https://doi.org/10.1021/acs.est.6b05843.

    Article  PubMed  CAS  Google Scholar 

  38. Awad E, Zhang X, Bhavsar SP, Petro S, Crozier PW, Reiner EJ, et al. Long-term environmental fate of perfluorinated compounds after accidental release at Toronto airport. Environ Sci Technol. 2011;45:8081–9. https://doi.org/10.1021/es2001985.

    Article  PubMed  CAS  Google Scholar 

  39. Oakes KD, Benskin JP, Martin JW, Ings JS, Heinrichs JY, Dixon DG, et al. Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam. Aquat Toxicol. 2010;98:120–9. https://doi.org/10.1016/j.aquatox.2010.02.005.

    Article  PubMed  CAS  Google Scholar 

  40. Moody CA, Martin JW, Kwan WC, Muir DCG, Mabury SA. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environ Sci Technol. 2002;36:545–51. https://doi.org/10.1021/es011001+.

    Article  PubMed  CAS  Google Scholar 

  41. Guelfo JL, Adamson DT. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in U.S. drinking water. Environ Pollut. 2018;236:505–13. https://doi.org/10.1016/j.envpol.2018.01.066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mueller R, Yingling V. Aqueous film-forming foam (AFFF), Interstate Technol Regul Counc Sheets (ITRC). 2018.

  43. Anderson RH, Thompson T, Stroo HF, Leeson A. US Department of Defense-funded fate and transport research on per- and polyfluoroalkyl substances at aqueous film-forming foam-impacted sites. Environ Toxicol Chem. 2021;40:37–43. https://doi.org/10.1002/etc.4694.

    Article  PubMed  CAS  Google Scholar 

  44. Draper J, Enot DP, Parker D, Beckmann M, Snowdon S, Lin W, et al. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour “rules”. BMC Bioinform. 2009;10:227. https://doi.org/10.1186/1471-2105-10-227.

    Article  Google Scholar 

  45. Guha R. Chemical informatics functionality in R. J Stat Softw. 2007;18.

  46. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8. https://doi.org/10.1021/es5002105.

    Article  CAS  Google Scholar 

  47. García RA, Chiaia-Hernández AC, Lara-Martin PA, Loos M, Hollender J, Oetjen K, et al. Suspect screening of hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater by high-resolution mass spectrometry. Environ Sci Technol. 2019;53:8068–77. https://doi.org/10.1021/acs.est.9b01895.

    Article  PubMed  CAS  Google Scholar 

  48. Koelmel JP, Kroeger NM, Gill EL, Ulmer CZ, Bowden JA, Patterson RE, et al. Expanding lipidome coverage using LC-MS/MS data-dependent acquisition with automated exclusion list generation. J Am Soc Mass Spectrom. 2017;28:908–17. https://doi.org/10.1007/s13361-017-1608-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Little JL, Williams AJ, Pshenichnov A, Tkachenko V. Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J Am Soc Mass Spectrom. 2012;23:179–85. https://doi.org/10.1007/s13361-011-0265-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A large array of PFAS standards used to develop libraries were donated by SynQuest Labs, Inc. and Oakwood Products, Inc.

Funding

S.L.N was supported by USDA NIFA Hatch funds (CONH00789). JAB received support from the U.S. Environmental Protection Agency under the Science To Achieve Results (STAR) grant programs: EPA-G2018-STAR-B1—Grant#: 83962001-0—and EPA-G2019-STAR-E1—Grant#: 84004501-0. J.P.K and K.J.G.P. received support from Agilent Technologies ACT-UR grant mechanism.

Author information

Authors and Affiliations

Authors

Contributions

JP Koelmel—Algorithm concepts, software development, writing manuscript, and data processing. P Stelben—Software development, writing manuscript, and data processing. CA McDonough—Data acquisition, data analysis, and writing manuscript. DA Dukes—Data acquisition, data analysis, and writing manuscript. JJ Aristizabal-Henao—Data acquisition and writing manuscript. SL Nason—Testing software and writing manuscript. Y Li—software development (interface). S Sternberg—Developing tutorial material. E Lin—sample handling and preparation. M Beckmann—Data processing and manuscript writeup. AJ Williams—Data processing and manuscript writeup. J Draper—Data processing and manuscript writeup. JP Finch—Data processing and manuscript writeup. JK Munk—software development. C Deigl—Funding and manuscript writeup. EE Rennie—Funding, data processing, and manuscript writeup. JA Bowden—Algorithm concepts, funding, and manuscript writeup. KJG Pollitt—Funding and manuscript writeup.

Corresponding authors

Correspondence to John A. Bowden or Krystal J. Godri Pollitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Published in the topical collection Per- and Polyfluoroalkyl Substances (PFAS) – Contaminants of Emerging Concern with guest editors Erin Baker and Detlef Knappe.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 390 kb)

ESM 2

(XLSX 229 kb)

ESM 3

(XLSX 2933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koelmel, J.P., Stelben, P., McDonough, C.A. et al. FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Anal Bioanal Chem 414, 1201–1215 (2022). https://doi.org/10.1007/s00216-021-03392-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03392-7

Keywords

Navigation