Skip to main content

Advertisement

Log in

Analysis of 14 endocannabinoids and endocannabinoid congeners in human plasma using column switching high-performance atmospheric pressure chemical ionization liquid chromatography–mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The endocannabinoid system (ECS) is a complex cell-signaling system. To address the growing need of analytics capturing endocannabinoid levels to investigate the ECS, we developed and validated an assay for the quantitative analysis of 14 endocannabinoids and congeners. A simple extraction using protein precipitation with acetonitrile followed by online-trapping high-performance liquid chromatography–tandem mass spectrometry (LC/LC-MS/MS) was used to monitor the levels of 14 endocannabinoids in plasma. The assay was validated and intra-run and inter-run accuracies and imprecisions as well as matrix effects, recoveries, and sample stabilities were determined. As a proof of concept, a subset of study samples after naturalistic administration of Cannabis flower and concentrate was analyzed. With the exception of N-oleoyl dopamine and oleamide, all endocannabinoids fulfilled the predefined acceptance criteria. Reproducible recoveries and no significant matrix effects were observed. Sample stability was an issue. Analysis of the proof-of-concept study samples revealed a significantly (p = 0.006) higher concentration of docosatetraenoyl ethanolamide in concentrate users (300 ± 13 pg/mL) compared to flower users (252 ± 11 pg/mL). A robust, sensitive high-throughput assay for the quantitation of 14 endocannabinoids and congeners was successfully validated. Our study showed that it is mandatory to (A) appropriately stabilize samples and (B) separate and separately quantify 1-AG and 2-AG; otherwise, study results are unreliable. The analysis of study samples from Cannabis flower users versus Cannabis concentrate users revealed higher levels of docosatetraenoyl ethanolamide and anandamide (n.s.) in high THC concentrate users in accordance with the existing literature, supporting the validity of the assay measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics. 2015;12(4):692–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zamberletti E, Gabaglio M, Parolaro D. The endocannabinoid system and autism spectrum disorders: insights from animal models. Int J Mol Sci. 2017;18(9).

  3. Witkamp R. Fatty acids, endocannabinoids and inflammation. Eur J Pharmacol. 2016;785:96–107.

    Article  CAS  PubMed  Google Scholar 

  4. Alger BE. Endocannabinoids and their implications for epilepsy. Epilepsy Curr. 2004;4(5):169–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lovinger DM. Presynaptic modulation by endocannabinoids. Handb Exp Pharmacol. 2008;184:435–77.

    Article  CAS  Google Scholar 

  6. Di Marzo V, et al. Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids. 2002;66(2–3):377–91.

    Article  PubMed  Google Scholar 

  7. Woodhams SG, et al. The cannabinoid system and pain. Neuropharmacology. 2017;124:105–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodhams SG, et al. The role of the endocannabinoid system in pain. Handb Exp Pharmacol. 2015;227:119–43.

    Article  CAS  PubMed  Google Scholar 

  9. Pistis M, Melis M. From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem. 2010;17(14):1450–67.

    Article  CAS  PubMed  Google Scholar 

  10. Moriconi A, et al. GPR55: current knowledge and future perspectives of a purported “Type-3” cannabinoid receptor. Curr Med Chem. 2010;17(14):1411–29.

    Article  CAS  PubMed  Google Scholar 

  11. Alexander SP, Kendall DA. The complications of promiscuity: endocannabinoid action and metabolism. Br J Pharmacol. 2007;152(5):602–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pertwee RG, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev. 2010;62(4):588–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woodward DF, Liang Y, Krauss AH. Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br J Pharmacol. 2008;153(3):410–9.

    Article  CAS  PubMed  Google Scholar 

  14. Maione S, Costa B, Di Marzo V. Endocannabinoids: a unique opportunity to develop multitarget analgesics. Pain. 2013;154(Suppl 1):S87–93.

    Article  CAS  PubMed  Google Scholar 

  15. Marchioni C, et al. A column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry method to determine anandamide and 2-arachidonoylglycerol in plasma samples. Anal Bioanal Chem. 2017;409(14):3587–96.

    Article  CAS  PubMed  Google Scholar 

  16. Fanelli F, et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J Lipid Res. 2012;53(3):481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bluher M, et al. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes. 2006;55(11):3053–60.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fernandez-Rodriguez CM, et al. Circulating endogenous cannabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis. Liver Int. 2004;24(5):477–83.

    Article  CAS  PubMed  Google Scholar 

  19. Balvers MG, Verhoeckx KC, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(14–15):1583–90.

    Article  CAS  PubMed  Google Scholar 

  20. Di Marzo V, et al. Role of insulin as a negative regulator of plasma endocannabinoid levels in obese and nonobese subjects. Eur J Endocrinol. 2009;161(5):715–22.

    Article  PubMed  Google Scholar 

  21. Thomas A, et al. Quantitative and qualitative profiling of endocannabinoids in human plasma using a triple quadrupole linear ion trap mass spectrometer with liquid chromatography. Rapid Commun Mass Spectrom. 2009;23(5):629–38.

    Article  CAS  PubMed  Google Scholar 

  22. Acquaro Junior VR, et al. Analysis of endocannabinoids in plasma samples by biocompatible solid-phase microextraction devices coupled to mass spectrometry. Anal Chim Acta. 2019;1091:135–45.

    Article  CAS  PubMed  Google Scholar 

  23. Gurke R, et al. Determination of endocannabinoids and endocannabinoid-like substances in human K3EDTA plasma - LC-MS/MS method validation and pre-analytical characteristics. Talanta. 2019;204:386–94.

    Article  CAS  PubMed  Google Scholar 

  24. Souza ID, Hantao LW, Queiroz MEC. Polymeric ionic liquid open tubular capillary column for on-line in-tube SPME coupled with UHPLC-MS/MS to determine endocannabinoids in plasma samples. Anal Chim Acta. 2019;1045:108–16.

    Article  CAS  PubMed  Google Scholar 

  25. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30.

    Article  CAS  PubMed  Google Scholar 

  26. US Department of Health and Human Services, Guidance for Industry, Bioanalytical Method Validation. US FDA, Center for Drug Evaluation and Research, Center for Veterinary Medicine, MD, USA; 2018.

  27. Bidwell LC, et al. Association of naturalistic administration of Cannabis flower and concentrates with intoxication and impairment. JAMA Psychiatry. 2020;77(8):787–96.

    Article  PubMed  Google Scholar 

  28. Fabritius M, et al. THCCOOH concentrations in whole blood: are they useful in discriminating occasional from heavy smokers? Drug Test Anal. 2014;6(1–2):155–63.

    Article  CAS  PubMed  Google Scholar 

  29. Lu HC, Mackie K. An introduction to the endogenous cannabinoid System. Biol Psychiatry. 2016;79(7):516–25.

    Article  CAS  PubMed  Google Scholar 

  30. Veilleux A, Di Marzo V, Silvestri C. The expanded endocannabinoid system/endocannabinoidome as a potential target for treating diabetes mellitus. Curr Diab Rep. 2019;19(11):117.

    Article  CAS  PubMed  Google Scholar 

  31. Chau CH, et al. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res. 2008;14(19):5967–76.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Klawitter J, et al. An atmospheric pressure chemical ionization MS/MS assay using online extraction for the analysis of 11 cannabinoids and metabolites in human plasma and urine. Ther Drug Monit. 2017;39(5):556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zoerner AA, et al. Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: a comprehensive review from an analytical and biological perspective. Biochim Biophys Acta. 2011;1811(11):706–23.

    Article  CAS  PubMed  Google Scholar 

  34. Rouzer CA, Ghebreselasie K, Marnett LJ. Chemical stability of 2-arachidonylglycerol under biological conditions. Chem Phys Lipids. 2002;119(1–2):69–82.

    Article  CAS  PubMed  Google Scholar 

  35. Engeli S, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes. 2005;54(10):2838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bisogno T, et al. Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun. 1999;256(2):377–80.

    Article  CAS  PubMed  Google Scholar 

  37. Richardson D, et al. Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry. Anal Biochem. 2007;360(2):216–26.

    Article  CAS  PubMed  Google Scholar 

  38. Valenti M, et al. The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J Neurochem. 2005;95(3):662–72.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez S, et al. Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res. 2002;954(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  40. Kondo S, et al. 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through CA2+-dependent and -independent mechanisms. FEBS Lett. 1998;429(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  41. Rohrig W, et al. Quantification of 24 circulating endocannabinoids, endocannabinoid-related compounds, and their phospholipid precursors in human plasma by UHPLC-MS/MS. J Lipid Res. 2019;60(8):1475–88.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Solinas M, et al. Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology. 2010;209(2):191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leweke FM, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2:e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morgan CJ, et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. Br J Psychiatry. 2013;202(5):381–2.

    Article  PubMed  Google Scholar 

  45. Hall W, Degenhardt L. Adverse health effects of non-medical cannabis use. Lancet. 2009;374(9698):1383–91.

    Article  CAS  PubMed  Google Scholar 

  46. Bisogno T, et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134(4):845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaston TE, Szaflarski JP. Cannabis for the treatment of epilepsy: an update. Curr Neurol Neurosci Rep. 2018;18(11):73.

    Article  PubMed  Google Scholar 

  48. Muhl D, et al. Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse. Naunyn Schmiedeberg's Arch Pharmacol. 2014;387(7):691–5.

    Article  CAS  Google Scholar 

  49. Felder CC, et al. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci U S A. 1993;90(16):7656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hanus L, et al. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem. 1993;36(20):3032–4.

    Article  CAS  PubMed  Google Scholar 

  51. Kelly P, Jones RT. Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J Anal Toxicol. 1992;16(4):228–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this study was provided by grants from the National Institutes of Health (DA039707 to Dr. Hutchison) and Colorado Department of Public Health and Environment (96947 to Dr. Bidwell). The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost Klawitter.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Clinical samples

The clinical study was approved by the University of Colorado Boulder Institutional Review Board and the primary outcomes have been published previously [27]. The study was registered as an observational study in ClinicalTrials.gov (NCT03522103).

Source of biological material

Blank human K2EDTA plasma was received from Bioreclamation IVT (Westbury, NY, USA) and charcoal-stripped human plasma was received from BioCheMed (Winchester, VA, USA).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.94 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sempio, C., Klawitter, J., Jackson, M. et al. Analysis of 14 endocannabinoids and endocannabinoid congeners in human plasma using column switching high-performance atmospheric pressure chemical ionization liquid chromatography–mass spectrometry. Anal Bioanal Chem 413, 3381–3392 (2021). https://doi.org/10.1007/s00216-021-03280-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03280-0

Keywords

Navigation