Skip to main content
Log in

Simultaneous electrochemical aptasensing of patulin and ochratoxin A in apple juice based on gold nanoparticles decorated black phosphorus nanomaterial

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Simultaneous detection of patulin (PAT) and ochratoxin A (OTA) in food products is in great demand, which can prevent toxins from being exposed to human and animal bodies. However, simultaneous detection of multiple targets still faces a challenge. Herein, we developed a novel electrochemical aptasensor for the simultaneous detection of PAT and OTA in apple juice based on gold nanoparticles decorated black phosphorus (AuNPs-BP) nanomaterial. AuNPs-BP function?/work? as a sensing platform for loading much different electrochemical signal molecules functionalized aptamers. In this context, methylene blue functionalized PAT aptamers (Mb-PAT-aptamers) and ferrocene functionalized OTA aptamers (Fc-OTA-aptamers) have been introduced here to fabricate the aptasensor. Fc close to electrode surface showed a strong signal, whereas Mb was far away from electrode surface so exhibited a weak signal in the absence of OTA and PAT. Two kinds of electrochemical signal changes have been recorded dependent on target of OTA and PAT concentrations. So, simultaneous detection of OTA and PAT is achieved. Under the optimum conditions, using this developed biosensor, PAT and OTA can be quantified at a linearity range of 0.01 × 10−7 μg·mL−1 ~ 0.10 μg·mL−1. In addition, it also has good selectivity, stability and repeatability. For the practical application, it shows promising performance for the simultaneous detection of PAT and OTA in apple juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang WG, Han Y, Chen XM, Luo XL, Wang JL, Yue TL, et al. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 2017;232:145–54.

    Article  CAS  PubMed  Google Scholar 

  2. Wang XR, Jin CN, Zhong YJ, Li X, Han JH, Xue W, Wu P, Xia X.D, Peng XL. Glutathione reduction of patulin-evoked cytotoxicity in HEK293 cells by the prevention of oxidative damage and the mitochondrial apoptotic pathway. J Agr Food Chem, 2018;66: 7775–7785.

  3. Guo W, Pi FW, Zhang HX, Sun JD, Zhang YZ, Sun XL. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron. 2017;98:299–304.

    Article  CAS  PubMed  Google Scholar 

  4. Wu ZZ, Xu EB, Jin ZY, Irudayaraj J. An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem. 2018;249:136–42.

    Article  CAS  PubMed  Google Scholar 

  5. Wu SJ, Duan N, Zhang WX, Zhao S, Wang ZP. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Anal Biochem. 2016;508:58–64.

    Article  CAS  PubMed  Google Scholar 

  6. Marín S, Mateo EM, Sanchis V, Valle-Algarra FM, Ramos AJ, Jiménez M. Patulin contamination in fruit derivatives, including baby food, from the Spanish market. Food Chem. 2011;124:563–8.

    Article  Google Scholar 

  7. Bagheri N, Khataee A, Habibi B, Hassanzadeh J. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta. 2018;179:710–8.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Yang LL, Lin CY, Guo LH, Qiu B, Lin ZY, et al. Fluorescence aptasensor for ochratoxin a in food samples based on hyperbranched rolling circle amplification. Anal Methods-UK. 2015;7:6109–13.

    Article  CAS  Google Scholar 

  9. Zhang TY, Sun XF, Li L, Ma JM, Zhang RQ, Liu XL, et al. Ochratoxin a exposure impairs porcine Granulosa cell growth via the PI3K/AKT signaling pathway. Journal of Agricultural and Food Chem. 2019;67:2679–90.

    Article  CAS  Google Scholar 

  10. Qing Y, Li X, Chen S, Zhou XP, Luo M, Xu X, et al. Differential pulse voltammetric ochratoxin a assay based on the use of an aptamer and hybridization chain reaction. Microchim Acta. 2017;184:863–70.

    Article  CAS  Google Scholar 

  11. Liu C, Guo YJ, Luo F, Rao PF, Fu CL, Wang SY. Homogeneous electrochemical method for ochratoxin a determination based on target triggered aptamer hairpin switch and exonuclease III-assisted recycling amplification. Food Anal Method. 2017;10:1982–90.

    Article  Google Scholar 

  12. Zhao Y, Zhang YH, Zhuge Z, Tang YH, Tao JW, Chen Y. Synthesis of a poly-L-lysine/black phosphorus hybrid for biosensors. Anal Chem. 2018;90:3149–55.

    Article  CAS  PubMed  Google Scholar 

  13. Tang J, Huang YP, Cheng Y, Huang LL, Zhuang JY, Tang DP. Two-dimensional MoS2 as a nano-binder for ssDNA: ultrasensitive aptamer based amperometric detection of ochratoxin a. Microchim Acta. 2018;185:162.

    Article  Google Scholar 

  14. Sun AL, Zhang YF, Sun GP, Wang XN, Tang DP. Homogeneous electrochemical detection of ochratoxin a in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron. 2017;89:659–65.

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Zhang YJ, Pang GS, Zhang YW, Guo SJ. Tuning the aggregation/disaggregation behavior of graphene quantum dots by structure-switching aptamer for high-sensitivity fluorescent ochratoxin a sensor. Anal Chem. 2017;89:1704–9.

    Article  CAS  PubMed  Google Scholar 

  16. Karczmarczyk A, Baeumner AJ, Feller KH. Rapid and sensitive inhibition-based assay for the electrochemical detection of Ochratoxin a and Aflatoxin M1 in red wine and milk. Electrochim Acta. 2017;243:82–9.

    Article  CAS  Google Scholar 

  17. Zhang T, Xing B, Han QZ, Lei YF, Wu D, Ren X, et al. Electrochemical immunosensor for ochratoxin a detection based on au octahedron plasmonic colloidosomes. Anal Chim Acta. 2018;1032:114–21.

    Article  CAS  PubMed  Google Scholar 

  18. Griffith CJ. Food safety: where from and where to? Brit Food J. 2006;108:6–15.

    Article  Google Scholar 

  19. Bhat R, Rai RV, Karim AA. Mycotoxins in food and feed: present status and future concerns. Compr Rev Food Sci F. 2010;9:57–81.

    Article  CAS  Google Scholar 

  20. Fernández-Baldo MA, Bertolino FA, Fernández G, Messina GA, Sanz MI, Raba J. Determination of Ochratoxin a in apples contaminated with Aspergillus ochraceus by using a microfluidic competitive immunosensor with magnetic nanoparticles. Analyst. 2011;136:2756–62.

    Article  PubMed  Google Scholar 

  21. Wang Z, Yu H, Han J, Xie G, Chen SP. Rare co/Fe-MOFs exhibiting high catalytic activity in electrochemical aptasensors for ultrasensitive detection of ochratoxin a. Chem Commun. 2017;53:9926–9.

    Article  CAS  Google Scholar 

  22. Jiang LP, Peng JD, Yuan R, Chai YQ, Yuan YL, Bai LJ, et al. An aptasensing platform for simultaneous detection of multiple analytes based on the amplification of exonuclease-catalyzed target recycling and DNA concatemers. Analyst. 2013;138:4818.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Boggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhanen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hee Hong B, Ahn J-H, Min Kim J, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015;7: 4598–4810.

  24. Li JT, Lemme MC, Östling M. Inkjet printing of 2D layered materials. ChemPhysChem. 2014;15:3427–34.

    Article  CAS  PubMed  Google Scholar 

  25. Gong YJ, Lin Z, Ye GL, Shi G, Feng SM, Lei Y, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano. 2015;9:11658–66.

    Article  CAS  PubMed  Google Scholar 

  26. Keyshar K, Gong YJ, Ye GL, Brunetto G, Zhou W, Cole DP, et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv Mater. 2015;27:4640–8.

    Article  CAS  PubMed  Google Scholar 

  27. Yu J, Li J, Zhang W, Chang H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem Sci. 2015;6:6705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou J, Zeng Q, Lv D, Sun L, Niu L, Fu W, et al. Controlled synthesis of high-quality Monolayered α-In2Se3 via physical vapor deposition. Nano Lett. 2015;15:6400–5.

    Article  CAS  PubMed  Google Scholar 

  29. Niu L, Liu X, Cong C, Wu C, Wu D, Chang TR, et al. Controlled synthesis of organic/inorganic van der Waals solid for tunable light–matter interactions. Adv Mater. 2015;27:7800–8.

    Article  CAS  PubMed  Google Scholar 

  30. Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD, Wu H, et al. Black phosphorus field-effect transistors. Nature Nanotechnol. 2014;9:372–7.

    Article  CAS  Google Scholar 

  31. Ren SY, Li Y, Guo QY, Peng Y, Bai JL, Ning BA, et al. Turn-on fluorometric immunosensor for diethylstilbestrol based on the use of air-stable polydopamine-functionalized black phosphorus and upconversion nanoparticles. Microchim Acta. 2018;185:429.

    Article  Google Scholar 

  32. Wood JD, Wells SA, Jariwala D, Chen KS, Cho EK, Sangwan VK, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014;14:6964–70.

    Article  CAS  PubMed  Google Scholar 

  33. Keyes RW. The electrical properties of black phosphorus. Phys Rev. 1953;92:580.

    Article  CAS  Google Scholar 

  34. Bridgman PW. Two new modifications of phosphorus. J Am Chem Soc. 1914;36:1344–63.

    Article  CAS  Google Scholar 

  35. Tao W. `Zhu XB, Yu XH, Zeng XW, Xiao QL, Zhang XD, Ji XY, Wang XS, Shi JJ, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics Adv Mater. 2017;29:1603276.

    Google Scholar 

  36. Yang GC, Liu ZM, Li Y, Hou YQ, Fei XX, Su CK, et al. Facile synthesis of black phosphorus-au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Biomater Sci. 2017;5:2048–55.

    Article  CAS  PubMed  Google Scholar 

  37. Yew YT, Sofer Z, Mayorga-Martinez CC, Pumera M. Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater Chem Front. 2017;1:1130–6.

    Article  CAS  Google Scholar 

  38. Chen WS, Ouyang J, Yi XY, Xu Y, Niu CC, Zhang WY, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater. 2018;30:1703458.

    Article  Google Scholar 

  39. Xu YF, Ren F, Liu HH, Zhang H, Han YB, Liu Z, Wang WL, Sun Q, Zhao CG, Li Z, Cholesterol-modified black phosphorus nanospheres for the first NIR-II fluorescence bioimaging. ACS Appl., Mater. Inter., 2019;11: 21399–21407.

  40. Qiu M, Wang D, Liang WY, Liu LP, Zhang Y, Chen X, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. P Natl Acad Sci USA. 2018;115:501–6.

    Article  CAS  Google Scholar 

  41. Liu HW, Hu K, Yan DF, Chen R, Zou YQ, Liu HB, et al. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv Mater. 2018;30:1800295.

    Article  Google Scholar 

  42. Gusmão R, Sofer Z, Bouša D, Pumera M. Black phosphorus synthesis path strongly influences its delamination, chemical properties and electrochemical performance. ACS Appl Energ Mater. 2018;1:503–9.

    Article  Google Scholar 

  43. Tao W, Zhu XB, Yu XH, Zeng XW, Xiao QL, Zhang XD, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater. 2017;29:1603276.

    Article  Google Scholar 

  44. Shiraishi Y, Shirakawa E, Tanaka K, Sakamoto H, Ichikawa S, Hirai T. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations. ACS Appl Mater Inter. 2014;6:7554–62.

    Article  CAS  Google Scholar 

  45. Zhao YY, Liu RJ, Sun WY, Lv L, Guo ZJ. Ochratoxin a detection platform based on signal amplification by exonuclease III and fluorescence quenching by gold nanoparticles. Sens Actuat B-Chem. 2018;255:1640–5.

    Article  CAS  Google Scholar 

  46. Su S, Zhang C, Yuwen LH, Liu XF, Wang LH, Fan CH, et al. Uniform au@ Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale. 2016;8:602–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jorge AC-A, Gregory P. Determination of Ochratoxin a with a DNA Aptamer. J Agric Food Chem. 2008;56:10456–61.

    Article  Google Scholar 

  48. Khan R, Aissa SB. TA. Sherazi, G. Catanante, A. Hayat, JL Marty, development of an Impedimetric Aptasensor for label free detection of Patulin in apple juice. Molecules. 2019;24:1017.

    Article  CAS  PubMed Central  Google Scholar 

  49. Yang LL, Zhang Y, Li RB, Lin CY, Guo LH, Qiu B, et al. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin a in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron. 2015;70:268–74.

    Article  CAS  PubMed  Google Scholar 

  50. Wu ZZ, Xu EB. ZY Jin, J Irudayaraj, an ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem. 2018;249:136–42.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu L, Sun Q, Xie L, Cao X. Na3V2(PO4)3@NC composite derived from polyaniline as cathode material for high-rate and ultralong-life sodium-ion batteries. Int J Energy Res. 2020;44:4586–94.

    Article  CAS  Google Scholar 

  52. Li Q, Cen Y, Huang JY, Li XJ, Zhang H, Geng YF, et al. Zinc oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Hori. 2018;3:525–31.

    Article  CAS  Google Scholar 

  53. Su S, Cao WF, Zhang C, Han XY, Yu H, Zhu D, et al. Improving performance of MoS2-based electrochemical sensors by decorating noble metallic nanoparticles on the surface of MoS2 nanosheet. RSC Adv. 2016;6:76614–20.

    Article  CAS  Google Scholar 

  54. Shan CS, Yang HF, Han DX, Zhang QX, Ivaska A, Niu L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron. 2010;25:1070–4.

    Article  CAS  PubMed  Google Scholar 

  55. Shu Y, Chen JY, Xu Q, Wei Z, Liu FP, Lu R, et al. MoS2 nanosheet-au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B. 2017;5:1446–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Key R&D Program of China (2019YFC1606703), and the Natural Science Foundation of Shaanxi Province in China (2020JM-429).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianli Yue or Qinglin Sheng.

Ethics declarations

The authors declare that all experiments are in compliance with ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Qiao, X., Zhang, X. et al. Simultaneous electrochemical aptasensing of patulin and ochratoxin A in apple juice based on gold nanoparticles decorated black phosphorus nanomaterial. Anal Bioanal Chem 413, 3131–3140 (2021). https://doi.org/10.1007/s00216-021-03253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03253-3

Keywords

Navigation