Skip to main content
Log in

A precise and rapid isotopomic analysis of small quantities of cholesterol at natural abundance by optimized 1H-13C 2D NMR

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cholesterol, the principal zoosterol, is a key metabolite linked to several health complications. Studies have shown its potential as a metabolic biomarker for predicting various diseases and determining food origin. However, the existing INEPT (insensitive nuclei enhanced by polarization transfer) 13C position-specific isotope analysis method of cholesterol by NMR was not suitable for very precise analysis of small quantities due to its long acquisition time and therefore is restricted to products rich in cholesterol. In this work, a symmetric and adiabatic heteronuclear single quantum coherence (HSQC) 2D NMR sequence was developed for the high-precision (few permil) analysis of small quantities of cholesterol. Adiabatic pulses were incremented for improving precision and sensitivity. Moreover, several strategies such as the use of non-uniform sampling, linear prediction, and variable recycling time were optimized to reduce the acquisition time. The number of increments and spectral range were also adjusted. The method was developed on a system with a cryogenically cooled probe and was not tested on a room-temperature system. Our new approach allowed analyzing as low as 5 mg of cholesterol in 31 min with a long-term repeatability lower than 2‰ on the 24 non-quaternary carbon atoms of the molecule comparing to 16.2 h for the same quantity using the existing INEPT method. This result makes conceivable the isotope analysis of matrices low in cholesterol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

References

  1. Röhrl C, Stangl H. Cholesterol metabolism - physiological regulation and pathophysiological deregulation by the endoplasmic reticulum. Wien Med Wochenschr. 2018;168:280–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kanungo S, Soares N, He M, Steiner RD. Sterol metabolism disorders and neurodevelopment-an update. Dev Disabil Res Rev. 2013;17:197–210.

    Article  PubMed  Google Scholar 

  3. Gidding SS, Allen NB. Cholesterol and atherosclerotic cardiovascular disease: a lifelong problem. JAHA. 2019;8:1–3.

    Article  Google Scholar 

  4. Hellman L, Rosenfeld RS, Eidinoff ML, Fukushima DK, Gallagher TF, Wang CI, et al. Isotopic studies of plasma cholesterol of endogenous and exogenous origins. J Clin Invest. 1955;34:48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Atkinson A, Colburn W, DeGruttola V, Demets D, Downing G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  6. Martins-de-Souza D. Is the word ‘biomarker’ being properly used by proteomics research in neuroscience? Eur Arch Psychiatry Clin Neurosci. 2010;260:561–2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koal T, Schmiederer D, Pham-Tuan H, Röhring C, Rauh M. Standardized LC-MS/MS based steroid hormone profile-analysis. J Steroid Biochem Mol Biol. 2012;129:129–38.

    Article  CAS  PubMed  Google Scholar 

  8. Erich S, Schill S, Annweiler E, Waiblinger H-U, Kuballa T, Lachenmeier DW, et al. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk. Food Chem. 2015;188:1–7.

    Article  CAS  PubMed  Google Scholar 

  9. Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results: guidelines and recommended terms for expressing stable isotope results. Rapid Commun Mass Spectrom. 2011;25:2538–60.

    Article  CAS  PubMed  Google Scholar 

  10. Stott AW, Evershed RP. δ13C analysis of cholesterol preserved in archaeological bones and teeth. Anal Chem. 1996;68:4402–8.

    Article  CAS  PubMed  Google Scholar 

  11. Mendelsohn D, Immelman AR, Vogel JC, Chevallerie GVL. Carbon-13 in natural cholesterol. Biomed Environ Mass Spectrom. 1986;13:21–4.

    Article  CAS  PubMed  Google Scholar 

  12. Muccio Z, Jackson GP. Isotope ratio mass spectrometry. Analyst. 2009;134:213–22.

    Article  CAS  PubMed  Google Scholar 

  13. Hayes JM. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev Mineral Geochem. 2001;43:225–77.

    Article  CAS  Google Scholar 

  14. Gauchotte-Lindsay C, Turnbull SM. On-line high-precision carbon position-specific stable isotope analysis: a review. TrAC Trends Anal Chem. 2016;76:115–25.

    Article  CAS  Google Scholar 

  15. Wuerfel O, Greule M, Keppler F, Jochmann MA, Schmidt TC. Position-specific isotope analysis of the methyl group carbon in methylcobalamin for the investigation of biomethylation processes. Anal Bioanal Chem. 2013;405:2833–41.

    Article  CAS  PubMed  Google Scholar 

  16. Rossmann A, Butzenlechner M, Schmidt H-L. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96:609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eiler J, Cesar J, Chimiak L, Dallas B, Grice K, Griep-Raming J, et al. Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. Int J Mass Spectrom. 2017;422:126–42.

    Article  CAS  Google Scholar 

  18. Neubauer C, Sweredoski MJ, Moradian A, Newman DK, Robins RJ, Eiler JM. Scanning the isotopic structure of molecules by tandem mass spectrometry. Int J Mass Spectrom. 2018;434:276–86.

    Article  CAS  Google Scholar 

  19. Eiler JM. The isotopic anatomies of molecules and minerals. Annu Rev Earth Planet Sci. 2013;41:411–41.

    Article  CAS  Google Scholar 

  20. Neubauer C, Crémière A, Wang XT, Thiagarajan N, Sessions AL, Adkins JF, et al. Stable isotope analysis of intact oxyanions using electrospray quadrupole-Orbitrap mass spectrometry. Anal Chem. 2020;92:3077–85.

    Article  CAS  PubMed  Google Scholar 

  21. Remaud GS, Giraudeau P, Lesot P, Akoka S. Isotope ratio monitoring by NMR. Part 1: Recent advances. In: Webb GA, editor. Modern magnetic resonance. Cham: Springer International Publishing; 2016. p. 1–26.

    Google Scholar 

  22. Martin GJ, Zhang BL, Martin ML, Dupuy P. Application of quantitative deuterium NMR to the study of isotope fractionation in the conversion of saccharides to ethanols. Biochem Biophys Res Commun. 1983;111:890–6.

    Article  CAS  PubMed  Google Scholar 

  23. Martin GJ, Guillou C, Martin ML, Cabanis MT, Tep Y, Aerny J. Natural factors of isotope fractionation and the characterization of wines. J Agric Food Chem. 1988;36:316–22.

    Article  CAS  Google Scholar 

  24. Caytan E, Botosoa EP, Silvestre V, Robins RJ, Akoka S, Remaud GS. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination. Anal Chem. 2007;79:8266–9.

    Article  CAS  PubMed  Google Scholar 

  25. Guyader S, Thomas F, Jamin E, Grand M, Akoka S, Silvestre V, et al. Combination of 13C and 2H SNIF-NMR isotopic fingerprints of vanillin to control its precursors. Flavour Fragr J. 2019;34:133–44.

    Article  CAS  Google Scholar 

  26. Liu C, McGovern GP, Liu P, Zhao H, Horita J. Position-specific carbon and hydrogen isotopic compositions of propane from natural gases with quantitative NMR. Chem Geol. 2018;491:14–26.

    Article  CAS  Google Scholar 

  27. Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. Prog Nucl Magn Reson Spectrosc. 2020;120–121:1–24.

    Article  PubMed  Google Scholar 

  28. Merchak N, Silvestre V, Rouger L, Giraudeau P, Rizk T, Bejjani J, et al. Precise and rapid isotopomic analysis by 1H–13C 2D NMR: application to triacylglycerol matrices. Talanta. 2016;156–157:239–44.

    Article  PubMed  Google Scholar 

  29. Hajjar G, Rizk T, Akoka S, Bejjani J. Cholesterol, a powerful 13C isotopic biomarker. Anal Chim Acta. 2019;1089:115–22.

    Article  CAS  PubMed  Google Scholar 

  30. Caytan E, Remaud GS, Tenailleau E, Akoka S. Precise and accurate quantitative 13C NMR with reduced experimental time. Talanta. 2007;71:1016–21.

    Article  CAS  PubMed  Google Scholar 

  31. Jézéquel T, Joubert V, Giraudeau P, Remaud GS, Akoka S. The new face of isotopic NMR at natural abundance: the new face of isotopic NMR at natural abundance. Magn Reson Chem. 2017;55:77–90.

    Article  PubMed  Google Scholar 

  32. Jim S, Ambrose SH, Evershed RP. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochim Cosmochim Acta. 2004;68:61–72.

    Article  CAS  Google Scholar 

  33. Laffey AO, Krigbaum J, Zimmerman AR. A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis. Rapid Commun Mass Spectrom. 2017;31:235–44.

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman DW, Rasmussen C. Position-specific carbon stable isotope ratios by proton NMR spectroscopy. Anal Chem. 2019;91:15661–9.

    Article  CAS  PubMed  Google Scholar 

  35. Farjon J, Milande C, Martineau E, Akoka S, Giraudeau P. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1 H, 13 C Data. Anal Chem. 2018;90:1845–51.

    Article  CAS  PubMed  Google Scholar 

  36. Marchand J, Martineau E, Guitton Y, Dervilly-Pinel G, Giraudeau P. Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics. Curr Opin Biotechnol. 2017;43:49–55.

    Article  CAS  PubMed  Google Scholar 

  37. Merchak N, El Bacha E, Bou Khouzam R, Rizk T, Akoka S, Bejjani J. Geoclimatic, morphological, and temporal effects on Lebanese olive oils composition and classification: a (1)H NMR metabolomic study. Food Chem. 2017;217:379–88.

    Article  CAS  PubMed  Google Scholar 

  38. Macura S. Accelerated multidimensional NMR data acquisition by varying the pulse sequence repetition time. J Am Chem Soc. 2009;131:9606–7.

    Article  CAS  PubMed  Google Scholar 

  39. Korzhneva DM, Ibraghimov IV, Billeter M, Orekhov VY. MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data. J Biomol NMR. 2001;21:263–8.

    Article  CAS  PubMed  Google Scholar 

  40. Barkhuijsen H, de Beer R, Bovée WMMJ, van Ormondt D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J Magn Reson (1969). 1985;61:465–81.

    CAS  Google Scholar 

  41. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP. Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson. 1987;73:69–77.

    CAS  Google Scholar 

  42. Srivastava NK, Pradhan S, Gowda GAN, Kumar R. In vitro, high-resolution 1H and 31P NMR based analysis of the lipid components in the tissue, serum, and CSF of the patients with primary brain tumors: one possible diagnostic view. NMR Biomed. 2010;23:113–22.

    CAS  PubMed  Google Scholar 

  43. Tenailleau E, Akoka S. Adiabatic 1H decoupling scheme for very accurate intensity measurements in 13C NMR. J Magn Reson. 2007;185:50–8.

    Article  CAS  PubMed  Google Scholar 

  44. Thibaudeau C, Remaud G, Silvestre V, Akoka S. Performance evaluation of quantitative adiabatic 13C NMR pulse sequences for site-specific isotopic measurements. Anal Chem. 2010;82:5582–90.

    Article  CAS  PubMed  Google Scholar 

  45. Castañar L, Parella T. Chapter Four - Recent advances in small molecule NMR: improved HSQC and HSQMBC experiments. In: Webb GA, editor. Annual reports on NMR spectroscopy: Academic Press; 2015. p. 163–232.

  46. Karabulut N, Baguet E, Trierweiler M, Akoka S. Improvement in quantitative accuracy of 13C DEPT integrals by parameter-optimization. Anal Lett. 2002;35:2549–63.

    Article  CAS  Google Scholar 

  47. Foroozandeh M, Jeannerat D. Reconstruction of full high-resolution HSQC using signal split in aliased spectra: reconstruction of full high-resolution spectra from aliased spectra. Magn Reson Chem. 2015;53:894–900.

    Article  CAS  PubMed  Google Scholar 

  48. Rouger L. Development and evaluation of fast methods in multidimensional NMR for the characterization of elastomeric mixtures. Thesis, Nantes. 2007. http://www.theses.fr/2017NANT4073. Accessed 7 April 2020.

  49. Silvestre V, Goupry S, Trierweiler M, Robins R, Akoka S. Determination of substrate and product concentrations in lactic acid bacterial fermentations by proton NMR using the ERETIC method. Anal Chem. 2001;73:1862–8.

    Article  CAS  PubMed  Google Scholar 

  50. Giraudeau P, Guignard N, Hillion E, Baguet E, Akoka S. Optimization of homonuclear 2D NMR for fast quantitative analysis: application to tropine–nortropine mixtures. J Pharmaceut Biomed Anal. 2007;43:1243–8.

    Article  CAS  Google Scholar 

  51. Martineau E, Giraudeau P, Tea I, Akoka S. Fast and precise quantitative analysis of metabolic mixtures by 2D 1H INADEQUATE NMR. J Pharmaceut Biomed Anal. 2011;54:252–7.

    Article  CAS  Google Scholar 

  52. Martineau E, Akoka S, Boisseau R, Delanoue B, Giraudeau P. Fast quantitative 1 H– 13 C two-dimensional NMR with very high precision. Anal Chem. 2013;85:4777–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The CORSAIRE platform from Biogenouest is acknowledged. The authors are grateful to Dr. Jonathan Farjon for his help in implementing NUS in the adiabatic HSQC sequence.

Code availability

Not applicable

Funding

L.H. received financial support from the Research Council of Saint-Joseph University of Beirut and CEISAM. S.R. received financial support from the French Research Ministry. The authors received funding from the Région Pays de la Loire (Grant RFI-Food 4.2-Project AIMM).

Author information

Authors and Affiliations

Authors

Contributions

Lenny Haddad: investigation, data curation, formal analysis, writing—original draft; Sophie Renou: investigation, data curation, formal analysis, writing—original draft; Gérald S. Remaud: conceptualization, resources, supervision, writing—review and editing, funding acquisition; Toufic Rizk: project administration, funding acquisition; Joseph Bejjani: conceptualization, supervision, resources, writing—review and editing, funding acquisition; Serge Akoka: conceptualization, methodology, supervision, writing—review and editing

Corresponding author

Correspondence to Serge Akoka.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1.02 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, L., Renou, S., Remaud, G.S. et al. A precise and rapid isotopomic analysis of small quantities of cholesterol at natural abundance by optimized 1H-13C 2D NMR. Anal Bioanal Chem 413, 1521–1532 (2021). https://doi.org/10.1007/s00216-020-03135-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03135-0

Keywords

Navigation