Skip to main content
Log in

Fluorescence anisotropy study of radiation-induced DNA damage clustering based on FRET

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 13 March 2021

This article has been updated

Abstract

A clustered DNA damage site (cluster), in which two or more lesions exist within a few helical turns, is believed to be a key factor determining the fate of a living cell exposed to a DNA damaging agent such as ionizing radiation. However, the structural details of a cluster such as the number of included lesions and their proximity are unknown. Herein, we develop a method to characterize a cluster by fluorescence anisotropy measurements based on Förster resonance energy transfer (homo-FRET). Plasmid DNA (pUC19) was irradiated with 2.0 and 0.52 MeV/u 4He2+, or 0.37 MeV/u 12C5+ ion beams (linear energy transfer: ~ 70, ~ 150, ~ 760 keV/μm, respectively) and 60Co γ-rays as a standard (~ 0.2 keV/μm) in the solid state. The irradiated DNA was labeled with an aminooxyl fluorophore (Alexa Fluor 488) to the aldehyde/ketone moieties such as apurinic/apyrimidinic sites. Homo-FRET analyses provided the apparent base separation values between lesions in a cluster produced by each ion beam track as 21.1, 19.4, and 18.7 base pairs. The production frequency of a cluster increases with increasing linear energy transfer of radiation. Our results demonstrate that homo-FRET analysis has the potential to discover the qualitative and the quantitative differences of the clusters produced not only by a variety of ionizing radiation but also by other DNA damaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

Change history

References

  1. Goodhead DT. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 1994;65:7–17.

    CAS  PubMed  Google Scholar 

  2. Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol. 1994;66:427–32.

    CAS  PubMed  Google Scholar 

  3. Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, et al. Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancer. 2017;9:91.

    Google Scholar 

  4. Boudaїffa BP, Cloutier D, Hunting MA, Huels SL. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science. 2000;287:1658–60.

    Google Scholar 

  5. Huels MA, Boudaїffa B, Cloutier P, Hunting D, Sanche L. Single, double, and multiple double strand breaks induced in DNA by 3 – 100 eV electrons. J Am Chem Soc. 2003;125:4467–77.

    CAS  PubMed  Google Scholar 

  6. Harrison LZ, Hatahet A, Purmal A, Wallace SS. Multiply damaged sites in DNA: interactions with Escherichia coli endonuclease III and VIII. Nucleic Acids Res. 1998;26:932–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pearson CG, Shikazono N, Thacker J, O’Neill P. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site. Nucleic Acids Res. 2004;32:263–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shikazono N, Pearson C, O’Neill P, Thacker L. The roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage. Nucleic Acids Res. 2006;34:3722–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shikazono N, Akamatsu K, Takahashi M, Noguchi M, Urushibara A, O’Neill P, et al. Significance of DNA polymerase I in in vivo processing of clustered DNA damage. Mutat Res. 2013;749:9–15.

    CAS  PubMed  Google Scholar 

  10. Shikazono N, Akamatsu K. Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli. Sci Rep. 2020;10:1–10.

    Google Scholar 

  11. Georgakilas AG, O’Neill P, Stewart RD. Induction and repair of clustered DNA lesions: what do we know so far? Radiat Res. 2013;180:100–9.

    CAS  PubMed  Google Scholar 

  12. Sage E, Shikazono N. Radiation-induced clustered DNA lesions: repair and mutagenesis. Free Radic Biol Med. 2017;107:125–35.

    CAS  PubMed  Google Scholar 

  13. Mavragani IV, Nikitaki Z, Kalospyros S, Georgakilas AG. Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance. Cancer. 2019;11:1789.

    CAS  Google Scholar 

  14. Sutherland BM, Bennett PV, Sidorkina O, Laval J. Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry. 2000;39:8026–31.

    CAS  PubMed  Google Scholar 

  15. Milligan JR, Aguilera JA, T.-T. D, Nguyen T-TD, Paglinawan RA, Ward JF. DNA strand-break yields after post-irradiation incubation with base excision repair endonucleases implicate hydroxyl radical pairs in double-strand break formation. Int J Radiat Biol. 2000;76:1475–83.

    CAS  PubMed  Google Scholar 

  16. Terato H, Tanaka R, Nakaarai Y, Nohara T, Doi Y, Iwai S, et al. Quantitative analysis of isolated and clustered DNA damage induced by gamma-rays, carbon ion beams, and iron ion beams. J Radiat Res. 2008;49:133–46.

    CAS  PubMed  Google Scholar 

  17. Urushibara A, Shikazono N, O’Neill P, Fujii K, Wada S, Yokoya A. LET dependence of the yield of single-, double-strand breaks and base lesions in fully hydrated plasmid DNA films by 4He2+ ion irradiation. Int J Radiat Biol. 2008;84:23–33.

    CAS  PubMed  Google Scholar 

  18. Sutherland BM, Bennett PV, Sidorkina O, Laval J. Clustered damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci U S A. 2000;97:103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sutherland BM, Bennett PV, Cintron-Torres N, Hada M, Trunk J, Monteleone D, et al. Clustered damages induced in human hematopoietic cells by low doses of ionizing radiation. J Radiat Res. 2000;43:S149–52.

    Google Scholar 

  20. Hada M, Georgakilas AG. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res. 2008;49:203–10.

    CAS  PubMed  Google Scholar 

  21. Asaithamby A, Hu B, Chen DJ. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci U S A. 2011;108:8293–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, et al. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic Res. 2016;50:S64–78.

    CAS  PubMed  Google Scholar 

  23. Xu X, Nakano T, Tsuda M, Kanamoto R, Hirayama R, Uzawa A, et al. Direct observation of damage clustering in irradiated DNA with atomic force microscopy. Nucleic Acids Res. 2020;48:e18.

    PubMed  Google Scholar 

  24. Matsuya Y, Nakano T, Kai T, Shikazono N, Akamatsu K, Yoshii Y, et al. A simplified cluster analysis of electron track structure for estimating complex DNA damage yields. Int J Mol Sci. 2020;21:1701.

    CAS  PubMed Central  Google Scholar 

  25. Williamson EA, Wray JW, Bansal P, Hromas R. Overview for the histone codes for DNA repair. In: Doetsch P, editor. Progress in molecular biology and translational science, vol 110. Mechanisms of DNA repair, vol. 2012. Oxford: Academic; 2012. p. 207–27.

    Google Scholar 

  26. Didenko VV. Fluorescent energy transfer nucleic acid probes. Mahwah: Humana; 2006.

    Google Scholar 

  27. Medintz I, Hildebrandt N. FRET - Förster resonance energy transfer: from theory to applications. Weinheim: Wiley-VCH; 2014.

    Google Scholar 

  28. Akamatsu K, Shikazono N. A methodology for estimating localization of apurinic/apyrimidinic sites in DNA using fluorescence resonance energy transfer. Anal Biochem. 2013;433:171–80.

    CAS  PubMed  Google Scholar 

  29. Akamatsu K, Shikazono N, Saito T. Localization estimation of ionizing radiation-induced abasic sites in DNA in the solid state using fluorescence resonance energy transfer. Radiat Res. 2015;183:105–13.

    PubMed  Google Scholar 

  30. Akamatsu K, Shikazono N, Saito T. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy. Anal Biochem. 2017;536:78–89.

    CAS  PubMed  Google Scholar 

  31. Tanaka A, Watanabe H, Shimizu T, Inoue M, Kikuchi M, Kobayashi Y, et al. Penetration controlled irradiation with ion beams for biological study. Nucl Instr Meth B. 1997;129:42–8.

    CAS  Google Scholar 

  32. Tanaka S, Fukuda M, Nishimura K, Watanabe H, Yamano N. IRACM: a code system to calculate induced radioactivity produced by ions and neutrons. JAERI-Data/Code 1997;97–019.

  33. Runnels LW, Scarlata SF. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J. 1995;69:1569–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 1988;85:8790–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Voss S, Wu Y-W. Chemoselective modification of proteins. In: D’Andrea LD, Romanelli A, editors. Chemical ligation. Hoboken: Wiley; 2017. p. 285–338.

    Google Scholar 

  36. Pogozelski WK, Tullius TD. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev. 1998;98:1089–107.

    CAS  PubMed  Google Scholar 

  37. Lakowicz JR. Fluorescence Anisotropy. In: Principle of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006. p. 353–82.

    Google Scholar 

  38. Stein IH, Schüller V, Böhm P, Tinnefeld P, Liedl T. Single-molecule FRET ruler based on rigid DNA origami blocks. Chemphyschem. 2011;12:689–95.

    CAS  PubMed  Google Scholar 

  39. Magee JL, Chatterjee A. Radiation chemistry of heavy- particle tracks. 1. General considerations. J Phys Chem. 1980;84:3529–36.

    CAS  Google Scholar 

  40. Chatterjee A, Schaefer HJ. Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys. 1976;13:215–27.

    CAS  PubMed  Google Scholar 

  41. Weinfeld M, Liuzzi M, Paterson MC. Response of phage T4 polynucleotide kinase toward dinucleotides containing apurinic sites: design of a 32P-postlabeling assay for apurinic sites in DNA. Biochemistry. 1990;29:1737–43.

    CAS  PubMed  Google Scholar 

  42. Watanabe R, Rahmanian S, Nikjoo H. Spectrum of radiation-induced clustered non-DSB damage – a Monte Carlo track structure modeling and calculations. Radiat Res. 2015;183:525–40.

    CAS  PubMed  Google Scholar 

  43. von Sontag C. Free-radical-induced DNA damage and its repair. Berlin: Springer-Verlag; 2006.

    Google Scholar 

  44. Tramier M, Coppey-Moisan M. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. Methods Cell Biol. 2008;85:395–414.

    CAS  PubMed  Google Scholar 

  45. Ströhl F, Wong HHW, Holt CE, Kaminski CF. Total internal reflection fluorescence anisotropy imaging microscopy: setup, calibration, and data processing for protein polymerization measurements in living cells. Methods Appl Fluoresc. 2018;6:014004.

    Google Scholar 

Download references

Funding

This work was supported by a Grants-in-aid for Scientific Research (for Scientific Research (C): 16K00551) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

K. Akamatsu. designed the research, performed the experiments, and wrote the manuscript. K. Akamatsu. and N. Shikazono analyzed and interpreted the data. T. Saito supported 60Co γ-ray irradiation experiments. All authors discussed the results and gave a lot of comments and suggestions for preparing the article.

Corresponding author

Correspondence to Ken Akamatsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable.

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akamatsu, K., Shikazono, N. & Saito, T. Fluorescence anisotropy study of radiation-induced DNA damage clustering based on FRET. Anal Bioanal Chem 413, 1185–1192 (2021). https://doi.org/10.1007/s00216-020-03082-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03082-w

Keywords

Navigation