Skip to main content
Log in

Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection of cyanide anion (CN), a highly toxic pollutant, has attracted growing attention in the past years. In this work, a nanosensor composed of hyperbranched polyethyleneimine (hPEI)-assisted dual-emissive gold nanoclusters (DE-Au NCs) is proposed for ratiometric detection of CN based on surface valence state-driving etch. The ratiometric color change of fluorescence is based on a fact that the red-emissive Au NCs with a high content of surface Au(I) can be easily etched by CN, while the blue-emissive Au NCs with nearly neutral character can resist CN. Because of the specific gold-CN chemistry and electrostatic attraction between the positively charged hPEI protecting layer and the negatively charged CN, the DE-Au NC-based nanosensor provides high selectivity toward CN over other anions with a limit of detection of 10 nM. Practical application of the proposed DE-Au NC nanosensor is verified by satisfying recoveries of CN determination in river water and urine samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen L-Y, Wang C-W, Yuan Z, Chang H-T. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87:216–29.

    CAS  PubMed  Google Scholar 

  2. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117:8208–71.

    CAS  PubMed  Google Scholar 

  3. Hesari M, Ding Z. A grand avenue to Au nanocluster electrochemiluminescence. Acc Chem Res. 2017;50:218–30.

    CAS  PubMed  Google Scholar 

  4. Xu WW, Zeng XC, Gao Y. Application of electronic counting rules for ligand-protected gold nanoclusters. Acc Chem Res. 2018;51:2739–47.

    CAS  PubMed  Google Scholar 

  5. Higaki T, Li Y, Zhao S, Li Q, Li S, Du X-S, et al. Atomically tailored gold nanoclusters for catalytic application. Angew Chem Int Ed. 2019;58:8291–302.

    CAS  Google Scholar 

  6. Kwak K, Lee D. Electrochemistry of atomically precise metal nanoclusters. Acc Chem Res. 2019;52:12–22.

    CAS  PubMed  Google Scholar 

  7. Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7:1549–65.

    CAS  PubMed  Google Scholar 

  8. Yang H, Lu F, Sun Y, Yuan Z, Lu C. Fluorescent gold nanocluster-based sensor array for nitrophenol isomer discrimination via an integration of host–guest interaction and inner filter effect. Anal Chem. 2018;90:12846–53.

    CAS  PubMed  Google Scholar 

  9. Yuan Z, Peng M, He Y, Yeung ES. Functionalized fluorescent gold nanodots: synthesis and application for Pb2+ sensing. Chem Commun. 2011;47:11981–3.

    CAS  Google Scholar 

  10. Tseng Y-T, Yuan Z, Yang Y-Y, Huang C-C, Chang H-T. Photoluminescent gold nanodots: role of the accessing ligands. RSC Adv. 2014;4:33629–35.

    CAS  Google Scholar 

  11. Lu F, Yang H, Yuan Z, Nakanishi T, Lu C, He Y. Highly fluorescent polyethyleneimine protected Au8 nanoclusters: one-pot synthesis and application in hemoglobin detection. Sensors Actuators B Chem. 2019;291:170–6.

    CAS  Google Scholar 

  12. Tao Y, Li M, Ren J, Qu X. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44:8636–63.

    CAS  PubMed  Google Scholar 

  13. Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 2015;44:4185–91.

    CAS  PubMed  Google Scholar 

  14. Li Z, Guo S, Yuan Z, Lu C. Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sensors Actuators B Chem. 2017;241:821–7.

    CAS  Google Scholar 

  15. Liu H, Jia L, Wang Y, Wang M, Gao Z, Ren X. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Anal Bioanal Chem. 2019;411:2531–43.

    CAS  PubMed  Google Scholar 

  16. Hu X, Shi J, Shi Y, Li W, Arslan M, Zhang W, et al. A ratiometric fluorescence sensor for ultra-sensitive detection of trypsin inhibitor in soybean flour using gold nanocluster@carbon nitride quantum dots. Anal Bioanal Chem. 2019;411:3341–51.

    CAS  PubMed  Google Scholar 

  17. Jensen P, Wilson MT, Aasa R, Malmstrom BG. Cyanide inhibition of cytochrome-c oxidase - a rapid-freeze electron-paramagnetic-res investigation. Biochem J. 1984;224:829–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baltrunas G, Pakalniene E, Popkirov GS, Schindler RN. The surface roughness of a silver electrode during electrocrystallization in cyanide electroplating bath. Z Phys Chem. 2002;216:791–802.

    CAS  Google Scholar 

  19. Dini JW. Cyanide and gold mining. Plat Surf Finish. 2004;91:17–8.

    Google Scholar 

  20. Jo J, Lee D. Turn-on fluorescence detection of cyanide in water: activation of latent fluorophores through remote hydrogen bonds that mimic peptide beta-turn motif. J Am Chem Soc. 2009;131:16283–91.

    CAS  PubMed  Google Scholar 

  21. Xu Z, Chen X, Kim HN, Yoon J. Sensors for the optical detection of cyanide ion. Chem Soc Rev. 2010;39:127–37.

    CAS  PubMed  Google Scholar 

  22. Huang MF, Chang HT. Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem Sci. 2012;3:2147–52.

    CAS  Google Scholar 

  23. Jackson R, Oda RP, Bhandari RK, Mahon SB, Brenner M, Rockwood GA, et al. Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure. Anal Chem. 2014;86:1845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang F, Wang L, Chen X, Yoon J. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev. 2014;43:4312–24.

    CAS  PubMed  Google Scholar 

  25. Dong Z-Z, Yang C, Vellaisamy K, Li G, Leung C-H, Ma D-L. Construction of a nano biosensor for cyanide anion detection and its application in environmental and biological systems. ACS Sens. 2017;2:1517–22.

    CAS  PubMed  Google Scholar 

  26. Karmakar A, Joarder B, Mallick A, Samanta P, Desai AV, Basu S, et al. Aqueous phase sensing of cyanide ions using a hydrolytically stable metal–organic framework. Chem Commun. 2017;53:1253–6.

    CAS  Google Scholar 

  27. Long L, Huang M, Wang N, Wu Y, Wang K, Gong A, et al. A mitochondria-specific fluorescent probe for visualizing endogenous hydrogen cyanide fluctuations in neurons. J Am Chem Soc. 2018;140:1870–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cang J, Wang C-W, Chen P-C, Lin Y-J, Li Y-C, Chang H-T. Control of pH for separated quantitation of nitrite and cyanide ions using photoluminescent copper nanoclusters. Anal Methods. 2017;9:5254–9.

    CAS  Google Scholar 

  29. Wang C-W, Chen Y-N, Wu B-Y, Lee C-K, Chen Y-C, Huang Y-H, et al. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal Bioanal Chem. 2016;408:287–94.

    CAS  PubMed  Google Scholar 

  30. Wang X-B, Wang Y-L, Yang J, Xing X-P, Li J, Wang L-S. Evidence of significant covalent bonding in Au(CN)2. J Am Chem Soc. 2009;131:16368–70.

    CAS  PubMed  Google Scholar 

  31. Senapati D, Dasary SSR, Singh AK, Senapati T, Yu H, Ray PC. A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level. Chem-Eur J. 2011;17:8445–51.

    CAS  PubMed  Google Scholar 

  32. Liu YL, Ai KL, Cheng XL, Huo LH, Lu LH. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv Funct Mater. 2010;20:951–6.

    CAS  Google Scholar 

  33. Shang L, Jin LH, Dong SJ. Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem Commun. 2009:3077–9.

  34. Zhang G, Qiao Y, Xu T, Zhang C, Zhang Y, Shi L, et al. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission. Nanoscale. 2015;7:12666–72.

    CAS  PubMed  Google Scholar 

  35. Yuan Z, Du Y, He Y. Hyperbranched polyamine assisted synthesis of dual-luminescent gold composite with pH responsive character. Methods Appl Fluoresc. 2017;5:014011.

    PubMed  Google Scholar 

  36. Yuan Z, Lu F, Peng M, Wang C-W, Tseng Y-T, Du Y, et al. Selective colorimetric detection of hydrogen sulfide based on primary amine-active ester cross-linking of gold nanoparticles. Anal Chem. 2015;87:7267–73.

    CAS  PubMed  Google Scholar 

  37. Yuan Z, Hu C-C, Chang H-T, Lu C. Gold nanoparticles as sensitive optical probes. Analyst. 2016;141:1611–26.

    CAS  PubMed  Google Scholar 

  38. White-Morris RL, Olmstead MM, Balch AL. Aurophilic interactions in cationic gold complexes with two isocyanide ligands. Polymorphic yellow and colorless forms of [(cyclohexyl isocyanide)2AuI](PF6) with distinct luminescence. J Am Chem Soc. 2003;125:1033–40.

    CAS  PubMed  Google Scholar 

  39. Chen T-H, Tseng W-L. (Lysozyme type VI)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small. 2012;8:1912–9.

    CAS  PubMed  Google Scholar 

  40. Du Y, Yuan Z, Xu D, Cai N, He Y, Yeung ES. Polyethyleneimine solubilized luminescent Au(I)-thiolate complexes for highly sensitive and selective cyanide anion sensing. J Chin Chem Soc. 2013;60:1347–52.

    CAS  Google Scholar 

  41. Yuan Z, Cai N, Du Y, He Y, Yeung ES. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem. 2014;86:419–26.

    CAS  PubMed  Google Scholar 

  42. Xu D, Wang Q, Yang T, Cao J, Lin Q, Yuan Z, et al. Polyethyleneimine capped silver nanoclusters as efficient antibacterial agents. Int J Environ Res Public Health. 2016;13:334.

    PubMed Central  Google Scholar 

  43. Shojaeifard Z, Hemmateenejad B, Shamsipur M. Efficient on–off ratiometric fluorescence probe for cyanide ion based on perturbation of the interaction between gold nanoclusters and a copper(II)-phthalocyanine complex. ACS Appl Mater Interfaces. 2016;8:15177–86.

    CAS  PubMed  Google Scholar 

  44. Zong C, Zheng LR, He W, Ren X, Jiang C, Lu L. In situ formation of phosphorescent molecular gold(I) cluster in a macroporous polymer film to achieve colorimetric cyanide sensing. Anal Chem. 2014;86:1687–92.

    CAS  PubMed  Google Scholar 

  45. Lu D, Liu L, Li F, Shuang S, Li Y, Choi MMF, et al. Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectrochim Acta, Part A. 2014;121:77–80.

    CAS  Google Scholar 

  46. Cheng C, Chen H-Y, Wu C-S, Meena JS, Simon T, Ko F-H. A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence–colorimetric sensor with a wide concentration range. Sensors Actuators B Chem. 2016;227:283–90.

    CAS  Google Scholar 

  47. Rajamanikandan R, Ilanchelian M. β-Cyclodextrin protected gold nanoparticle based cotton swabs as an effective candidate for specific sensing of trace levels of cyanide. Anal Methods. 2019;11:97–104.

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Beijing Natural Science Foundation (2202038), the National Natural Science Foundation of China (21605003 and 51877205), the State Key Laboratory of NBC Protection for Civilian (JH05-2019-02), and the Fundamental Research Funds for the Central Universities (buctrc201619).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaosen Li or Zhiqin Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All biological experiments were performed with the approval of the Human Ethics Committee, Beijing University of Chemical Technology. Informed consent was obtained from the participant included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yang, Y., Liu, S. et al. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Anal Bioanal Chem 412, 5819–5826 (2020). https://doi.org/10.1007/s00216-020-02806-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02806-2

Keywords

Navigation