Skip to main content
Log in

Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Complexation plays an important role in many biological phenomena, the analysis of different samples, optimization of separation processes, and increasing the pharmacological activity of drugs. This paper discusses the features of using mobility shift affinity capillary electrophoresis for studying strong complexation. Electrophoretic peaks for this case are often triangular. It was shown that the use of electrophoretic mobility obtained from the peak apex time to calculate binding constants leads to significant systematic and random errors, and the parameter a1 of the Haarhoff-Van der Linde function should be used instead of the apex time. Distorted triangular peaks with dips were shown to be observed at too high a ratio of analyte concentration in the sample to ligand concentration in the background electrolyte, and the peaks and parameter a1 significantly shifted. It was found that the permissible excess of analyte concentration over ligand concentration was approximately 10–35, provided that the parameter a1 was used, but the peak shape should be used as a landmark, and only triangular peaks without dips should be fitted with the function. The lowest possible analyte concentration should be utilized, which allows the use of a wider range of ligand concentration leading to higher precision of determining the binding constants values. Kinetically labile 1:1 complexes between (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and betulin 3,28-diphthalate (DPhB) and betulin 3,28-disuccinate (DScB) were studied as an example. The binding constant logarithms at 25 °C are 7.23 ± 0.03 and 7.13 ± 0.10 for the HP-γ-CD complexes of DPhB and DScB, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114:10940–75.

  2. Jacob S, Nair AB. Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev Res. 2018;79:201–17.

    CAS  PubMed  Google Scholar 

  3. Mura P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal. 2014;101:238–50.

    CAS  PubMed  Google Scholar 

  4. Olabi M, Stein M, Wätzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76–92.

    CAS  PubMed  Google Scholar 

  5. Dubský P, Dvořák M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016;408:8623–41.

    PubMed  Google Scholar 

  6. Musile G, Cenci L, Andreetto E, Ambrosi E, Tagliaro F, Bossi AM. Screening of the binding properties of molecularly imprinted nanoparticles via capillary electrophoresis. Anal Bioanal Chem. 2016;408:3435–43.

    CAS  PubMed  Google Scholar 

  7. Popova OV, Sursyakova VV, Burmakina GV, Levdansky VA, Rubaylo AI. Determination of stability constants of inclusion complexes of betulin derivatives with β-cyclodextrin by capillary electrophoresis. Dokl Chem. 2015;461:67–9.

    CAS  Google Scholar 

  8. Sursyakova VV, Levdansky VA, Rubaylo AI. Thermodynamic parameters for the complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin determined by affinity capillary electrophoresis. J Mol Liq. 2019;283:325–31.

    CAS  Google Scholar 

  9. Sursyakova VV, Levdansky VA, Rubaylo AI. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis. Electrophoresis. 2020;41:112–5.

    CAS  PubMed  Google Scholar 

  10. Stein M, Haselberg R, Mozafari-Torshizi M, Wätzig H. Experimental design and measurement uncertainty in ligand binding studies by affinity capillary electrophoresis. Electrophoresis. 2019;40:1041–54.

    CAS  PubMed  Google Scholar 

  11. Pangavhane S, Makrlík E, Ruzza P, Kašička V. Affinity capillary electrophoresis employed for determination of stability constants of antamanide complexes with univalent and divalent cations in methanol. Electrophoresis. 2019;40:2321–8.

    CAS  PubMed  Google Scholar 

  12. Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis. 2019;40:625–42.

    PubMed  Google Scholar 

  13. Neaga IO, Hambye S, Bodoki E, Palmieri C, Ansseau E, Belayew A, et al. Affinity capillary electrophoresis for identification of active drug candidates in myotonic dystrophy type 1. Anal Bioanal Chem. 2018;410:4495–507.

    CAS  PubMed  Google Scholar 

  14. Neaga IO, Hambye S, Bodoki E, Palmieri C, Eynde JJV, Ansseau E, et al. Correction to: Affinity capillary electrophoresis for identification of active drug candidates in myotonic dystrophy type 1. Anal Bioanal Chem. 2019;411:545.

    CAS  PubMed  Google Scholar 

  15. Ansorge M, Dubský P, Ušelová K. Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes. Electrophoresis. 2018;39:742–51.

    CAS  PubMed  Google Scholar 

  16. Konášová R, Koval D, Jaklová Dytrtová J, Kašička V. Comparison of two low flow interfaces for measurement of mobilities and stability constants by affinity capillary electrophoresis–mass spectrometry. J Chromatogr A. 2018;1568:197–204.

    PubMed  Google Scholar 

  17. Aizpurua-Olaizola O, Torano JS, Pukin A, Fu O, Boons GJ, de Jong GJ, et al. Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrate-based cholera toxin inhibitors. Electrophoresis. 2018;39:344–7.

    CAS  PubMed  Google Scholar 

  18. Kanizsová L, Ansorge M, Zusková I, Dubský P. Using single-isomer octa(6-O-sulfo)-γ-cyclodextrin for fast capillary zone electrophoretic enantioseparation of pindolol: determination of complexation constants, software-assisted optimization, and method validation. J Chromatogr A. 2018;1568:214–21.

  19. Mofaddel N, Fourmentin S, Guillen F, Landy D, Gouhier G. Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique. Anal Bioanal Chem. 2016;408:8211–20.

    CAS  PubMed  Google Scholar 

  20. Holm R, Hartvig RA, Nicolajsen HV, Westh P, Østergaard J. Characterization of the complexation of tauro and glyco-conjugated bile salts with γ-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin using affinity capillary electrophoresis. J Incl Phenom Macrocycl Chem. 2008;61:161–9.

    CAS  Google Scholar 

  21. Sursyakova VV, Rubaylo AI. Stability constants of adducts of succinate copper(II) complexes with β-cyclodextrin determined by capillary electrophoresis. Electrophoresis. 2018;39:1079–85.

    CAS  PubMed  Google Scholar 

  22. Pangavhane S, Böhm S, Makrlík E, Ruzza P, Kašička V. Affinity capillary electrophoresis and quantum mechanical calculations applied to investigation of [Gly6]-antamanide binding with sodium and potassium ions. Electrophoresis. 2017;38:1551–9.

    CAS  PubMed  Google Scholar 

  23. Sursyakova VV, Burmakina GV, Rubaylo AI. Composition and stability constants of copper(II) complexes with succinic acid determined by capillary electrophoresis. J Coord Chem. 2017;70:431–40.

    CAS  Google Scholar 

  24. Tůmová T, Monincová L, Čeřovský V, Kašička V. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Electrophoresis. 2016;37:3186–95.

    PubMed  Google Scholar 

  25. Sursyakova VV, Burmakina GV, Rubaylo AI. Influence of analyte concentration on stability constant values determined by capillary electrophoresis. J Chromatogr Sci. 2016;54:1253–62.

    CAS  PubMed  Google Scholar 

  26. Sladkov V. Affinity capillary electrophoresis in studying the complex formation equilibria of radionuclides in aqueous solutions. Electrophoresis. 2016;37:2558–66.

    CAS  PubMed  Google Scholar 

  27. Ehala S, Kašička V, Makrlík E. Determination of stability constants of valinomycin complexes with ammonium and alkali metal ions by capillary affinity electrophoresis. Electrophoresis. 2008;29:652–7.

    CAS  PubMed  Google Scholar 

  28. Jiang C, Armstrong DW. Use of CE for the determination of binding constants. Electrophoresis. 2010;31:17–27.

    CAS  PubMed  Google Scholar 

  29. Dubský P, Ördögová M, Malý M, Riesová M. CEval: all-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016;1445:158–65.

    PubMed  Google Scholar 

  30. Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016–2018). Electrophoresis. 2019;40:40–54.

    PubMed  Google Scholar 

  31. Vespalec R, Boček P. Calculation of stability constants for the chiral selector–enantiomer interactions from electrophoretic mobilities. J Chromatogr A. 2000;875:431–45.

    CAS  PubMed  Google Scholar 

  32. Hruška V, Svobodová J, Beneš M, Gaš B. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory. J Chromatogr A. 2012;1267:102–8.

    PubMed  Google Scholar 

  33. Svobodová J, Beneš M, Hruška V, Ušelová K, Gaš B. Simulation of the effects of complex-formation equilibria in electrophoresis: II. Experimental verification. Electrophoresis. 2012;33:948–57.

    PubMed  Google Scholar 

  34. Beneš M, Svobodová J, Hruška V, Dvořák M, Zusková I, Gaš B. A nonlinear electrophoretic model for PeakMaster: part IV. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Experimental verification. J Chromatogr A. 2012;1267:109–15.

    PubMed  Google Scholar 

  35. Galbusera C, Thachuk M, De Lorenzi E, Chen DDY. Affinity capillary electrophoresis using a low-concentration additive with the consideration of relative mobilities. Anal Chem. 2002;74:1903–14.

    CAS  PubMed  Google Scholar 

  36. Le Saux T, Varenne A, Gareil P. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Electrophoresis. 2005;26:3094–104.

    PubMed  Google Scholar 

  37. Dubský P, Dvořák M, Műllerová L, Gaš B. Determination of the correct migration time and other parameters of the Haarhoff–van der Linde function from the peak geometry characteristics. Electrophoresis. 2015;36:655–61.

    PubMed  Google Scholar 

  38. Erny GL, Bergström ET, Goodall DM. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff–Van der Linde function. J Chromatogr A. 2002;959:229–39.

    CAS  PubMed  Google Scholar 

  39. Erny GL, Bergström ET, Goodall DM. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function. Anal Chem. 2001;73:4862–72.

    CAS  PubMed  Google Scholar 

  40. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–917.

    CAS  PubMed  Google Scholar 

  41. Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97:1325–58.

    CAS  PubMed  Google Scholar 

  42. Holm R, Nicolajsen HV, Hartvig RA, Westh P, Østergaard J. Complexation of tauro- and glyco-conjugated bile salts with three neutral β-CDs studied by ACE. Electrophoresis. 2007;28:3745–52.

    CAS  PubMed  Google Scholar 

  43. François Y, Varenne A, Sirieix-Plenet J, Gareil P. Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis. J Sep Sci. 2007;30:751–60.

    PubMed  Google Scholar 

  44. Le Saux T, Varenne A, Perreau F, Siret L, Duteil S, Duhau L, et al. Determination of the binding parameters for antithrombin–heparin fragment systems by affinity and frontal analysis continuous capillary electrophoresis. J Chromatogr A. 2006;1132:289–96.

    PubMed  Google Scholar 

  45. Tolstikova TG, Sorokina IV, Tolstikov GA, Tolstikov AG, Flekhter OB. Biological activity and pharmacological prospects of lupane terpenoids: I. natural lupane derivatives. Rus J Bioorg Chem. 2006;32:37–49.

    CAS  Google Scholar 

  46. Popova OV, Sursyakova VV, Burmakina GV, Maksimov NG, Levdansky VA, Rubaylo AI. Solubility study of betulonic acid in the presence of hydroxypropyl-γ-cyclodextrin by capillary electrophoresis. J Sib Fed Univ Chem. 2016;9:171–6.

    Google Scholar 

  47. Sursyakova VV, Maksimov NG, Levdansky VA, Rubaylo AI. Combination of phase-solubility method and capillary zone electrophoresis to determine binding constants of cyclodextrins with practically water-insoluble compounds. J Pharm Biomed Anal. 2018;160:12–8.

    CAS  PubMed  Google Scholar 

  48. Sursyakova VV, Levdansky VA, Rubaylo AI. Thermodynamic parameters for the complexation of water-insoluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin determined by phase-solubility technique combined with capillary zone electrophoresis. Electrophoresis. 2019;40:1656–61.

    CAS  PubMed  Google Scholar 

  49. Levdanskii VA, Levdanskii AV, Kuznetsov BN. Synthesis of betulin dibenzoate and diphthalate. Chem Nat Compound. 2017;53:310–1.

    CAS  Google Scholar 

  50. Levdanskij VA, Levdanskij AV, Kuznetsov BN. Method for producing betulinol diphtalate. Russ Patent. № RU  2614149 C1. 23.03.2017.

  51. Levdanskij VA, Levdanskij AV, Kuznetsov BN. Method of producing betulinol disuccinate. Russ Patent. № RU 2638160 C1. 12.12.2017.

Download references

Funding

This work was conducted within the framework of the budget project АААА-А17-117021310221-7 for Institute of Chemistry and Chemical Technology SB RAS using the equipment of Krasnoyarsk Regional Research Equipment Centre of SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria V. Sursyakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sursyakova, V.V., Levdansky, V.A. & Rubaylo, A.I. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin. Anal Bioanal Chem 412, 5615–5625 (2020). https://doi.org/10.1007/s00216-020-02777-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02777-4

Keywords

Navigation