Skip to main content
Log in

Deep eutectic solvent-assisted facile synthesis of copper hydroxide nitrate nanosheets as recyclable enzyme-mimicking colorimetric sensor of biothiols

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the quest for alternative products that would conquer natural enzyme drawbacks, enzyme-like nanomaterials with controllable morphology, high catalytic activity, excellent stability, and reusability have gained extensive attention in recent years. Herein, a simple and versatile strategy based on basic deep eutectic solvents was used to create layered copper hydroxide nitrate (Cu2(OH)3NO3) with a well-structured nanosheet-like morphology. The present nanosheets exhibited extraordinary oxidase and peroxidase-like activity. More importantly, these nanosheets have shown the ability to operate at low and high temperatures with appreciable stability and multiple reusabilities. Based on inhibiting the oxidase-like activity of the prepared Cu2(OH)3NO3, we designed a colorimetric sensing technique with a high-efficiency detection of biothiols in serum samples. Because of the simplicity and low-cost fabrication approach, our findings would be beneficial to the artificial enzyme research community as another facile and green tactics to fabricate heterogeneous artificial enzymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL. Recent advances in nanomaterial probes for optical Biothiol sensing: a review. Anal Lett. 2017;51:443–68.

    Google Scholar 

  2. Zhang H, Chen J, Yang Y, Wang L, Li Z, Qiu H. Discriminative detection of glutathione in cell lysates based on oxidase-like activity of magnetic nanoporous graphene. Anal Chem. 2019;91:5004–10.

    CAS  PubMed  Google Scholar 

  3. Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanich N, Chailapakul O. Selective determination of homocysteine levels in human plasma using a silver nanoparticle-based colorimetric assay. Talanta. 2011;85:870–6.

    CAS  PubMed  Google Scholar 

  4. Shen LM, Chen Q, Sun ZY, Chen XW, Wang JH. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Anal Chem. 2014;86:5002–8.

    CAS  PubMed  Google Scholar 

  5. Wei S-C, Lin Y-W, Chang H-T. Carbon dots as artificial peroxidases for analytical applications. J Anal Test. 2019;3:191–205.

    Google Scholar 

  6. Wang S, Chen Z, Choo J, Chen L. Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity. Anal Bioanal Chem. 2016;408:1015–22.

    CAS  PubMed  Google Scholar 

  7. Huang Y, Liang G, Lin T, Hou L, Ye F, Zhao S. Magnetic cu/Fe3O4@FeOOH with intrinsic HRP-like activity at nearly neutral pH for one-step biosensing. Anal Bioanal Chem. 2019;411:3801–10.

    CAS  PubMed  Google Scholar 

  8. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    CAS  PubMed  Google Scholar 

  9. Su L, Dong W, Wu C, Gong Y, Zhang Y, Li L, et al. The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: mechanistic understanding and colorimetric biosensing. Anal Chim Acta. 2017;951:124–32.

    CAS  PubMed  Google Scholar 

  10. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46:8017–9.

    Google Scholar 

  11. Hong L, Liu AL, Li GW, Chen W, Lin XH. Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens Bioelectron. 2013;43:1–5.

    CAS  PubMed  Google Scholar 

  12. Lin L, Song X, Chen Y, Rong M, Zhao T, Wang Y, et al. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta. 2015;869:89–95.

    CAS  PubMed  Google Scholar 

  13. Chen J, Chen Q, Chen J, Qiu H. Magnetic carbon nitride nanocomposites as enhanced peroxidase mimetics for use in colorimetric bioassays, and their application to the determination of H2O2 and glucose. Microchim Acta. 2016;183:3191–9.

    CAS  Google Scholar 

  14. Lv W, Wang X, Wu J, Li H, Li F. pH and H2O2 dual-responsive carbon dots for biocatalytic transformation monitoring. Chin Chem Lett. 2019;30:1635–8.

    CAS  Google Scholar 

  15. Wu YH, Chen Q, Liu S, Xiao H, Zhang ML, Zhang XF. Surface molecular imprinting on g-C3N4 photooxidative nanozyme for improved colorimetric biosensing. Chin Chem Lett. 2019;30:2186–90.

    CAS  Google Scholar 

  16. Wang Y, Hu J, Zhuang Q, Ni Y. Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics. Biosens Bioelectron. 2016;80:111–7.

    CAS  PubMed  Google Scholar 

  17. Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, et al. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron. 2014;62:302–7.

    CAS  PubMed  Google Scholar 

  18. Chen Q, Chen J, Gao C, Zhang M, Chen J, Qiu H. Hemin-functionalized WS2 nanosheets as highly active peroxidase mimetics for label-free colorimetric detection of H2O2 and glucose. Analyst. 2015;140:2857–63.

    CAS  PubMed  Google Scholar 

  19. Zhao H, Li Y, Tan B, Zhang Y, Chen X, Quan X. PEGylated molybdenum dichalcogenide (PEG-MoS2) nanosheets with enhanced peroxidase-like activity for the colorimetric detection of H2O2. New J Chem. 2017;41:6700–8.

    CAS  Google Scholar 

  20. Wang S, Deng W, Yang L, Tan Y, Xie Q, Yao S. Copper-based metal-organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9:24440–5.

    CAS  PubMed  Google Scholar 

  21. Wang K, Feng D, Liu TF, Su J, Yuan S, Chen YP, et al. A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J Am Chem Soc. 2014;136:13983–6.

    CAS  PubMed  Google Scholar 

  22. Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, et al. Monitoring of heparin activity in live rats using metal-organic framework Nanosheets as peroxidase mimics. Anal Chem. 2017;89:11552–9.

    CAS  PubMed  Google Scholar 

  23. Qu R, Shen L, Qu A, Wang R, An Y, Shi L. Artificial peroxidase/oxidase multiple enzyme system based on Supramolecular hydrogel and its application as a biocatalyst for Cascade reactions. ACS Appl Mater Interfaces. 2015;7:16694–705.

    CAS  PubMed  Google Scholar 

  24. Shi W, Zhang X, He S, Huang Y. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun. 2011;47:10785–7.

    CAS  Google Scholar 

  25. Wang YM, Liu JW, Jiang JH, Zhong W. Cobalt oxyhydroxide nanoflakes with intrinsic peroxidase catalytic activity and their application to serum glucose detection. Anal Bioanal Chem. 2017;409:4225–32.

    CAS  PubMed  Google Scholar 

  26. Zhao X, Wu K, Lyu H, Zhang X, Liu Z, Fan G, et al. Porphyrin functionalized co(OH)2/GO nanocomposites as an excellent peroxidase mimic for colorimetric biosensing. Analyst. 2019;144:5284–91.

    CAS  PubMed  Google Scholar 

  27. Niu T, Deng X, Wang R, Zhou C. GO-PtNi hybrid nanoenzyme mimics for the colorimetric detection of hydrogen peroxide. Mater Today Chem. 2018;7:35–9.

    CAS  Google Scholar 

  28. Wan Y, Qi P, Zhang D, Wu J, Wang Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron. 2012;33:69–74.

    CAS  PubMed  Google Scholar 

  29. Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137:4552–8.

    CAS  PubMed  Google Scholar 

  30. Zhu X, Chen W, Wu K, Li H, Fu M, Liu Q, et al. A colorimetric sensor of H2O2 based on Co3O4–montmorillonite nanocomposites with peroxidase activity. New J Chem. 2018;42:1501–9.

    CAS  Google Scholar 

  31. Wei X, Chen J, Ali MC, Munyemana JC, Guan M, Qiu H. Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like and catalase-like activities and application in colorimetric assay of glucose. Microchim Acta. 2020. https://doi.org/10.1007/s00604-020-04298-4.

  32. Newman SP, Jones W. Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J Solid State Chem. 1999;148:26–40.

    CAS  Google Scholar 

  33. Stanimirova T, Dencheva S, Kirov G. Structural interpretation of anion exchange in divalent copper hydroxysalt minerals. Clay Miner. 2013;48:21–36.

    CAS  Google Scholar 

  34. Liu B. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications. Nanoscale. 2012;4:7194–8.

    CAS  PubMed  Google Scholar 

  35. Meyn M, Beneke K, Lagaly G. Anion-exchange reactions of hydroxy double salts. Inorg Chem. 1993;32:1209–15.

    CAS  Google Scholar 

  36. Bovio B, Locchi S. Crystal-structure of the orthorhombic basic copper nitrate, Cu2(OH)3NO3. J Crystallogr Spectrosc Res. 1982;12:507–17.

    CAS  Google Scholar 

  37. Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. Phys Chem Chem Phys. 2013;15:10904–13.

    CAS  PubMed  Google Scholar 

  38. Yu Q, Huang H, Chen R, Wang P, Yang H, Gao M, et al. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties. Nanoscale. 2012;4:2613–20.

    CAS  PubMed  Google Scholar 

  39. Lee SH, Her YS. Matijevi, cacute. Preparation and growth mechanism of uniform colloidal copper oxide by the controlled double-jet precipitation. J Colloid Interface Sci. 1997;186:193–202.

    CAS  PubMed  Google Scholar 

  40. Song F, Hu X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun. 2014;5:4477.

    CAS  PubMed  Google Scholar 

  41. Darmograi G, Prelot B, Layrac G, Tichit D, Martin-Gassin G, Salles F, et al. Study of adsorption and intercalation of Orange-type dyes into mg–Al layered double hydroxide. J Phys Chem C. 2015;119:23388–97.

    CAS  Google Scholar 

  42. Zhang K, Xu ZP, Lu J, Tang ZY, Zhao HJ, Good DA, et al. Potential for layered double hydroxides-based, innovative drug delivery systems. Int J Mol Sci. 2014;15:7409–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jia J, Wang H, Niu H, Chen J, Song J, Mao C, et al. Highly selective adsorption of organic dyes containing sulphonic groups using Cu2(OH)3NO3 nanosheets. J Nanopart Res. 2016;18.

  44. Chen J, Ali MC, Liu R, Claude MJ, Li Z, Zhai H, et al. Basic deep eutectic solvents as reactant, template and solvents for ultra-fast preparation of transition metal oxide nanomaterials. Chin Chem Lett. 2019. https://doi.org/10.1016/j.cclet.2019.09.055.

  45. Cai R, Yang D, Chen X, Huang Y, Lyv Y, He J, et al. Three dimensional multipod superstructure based on cu(OH)2 as a highly efficient Nanozyme. J Mater Chem B. 2016;4:4657–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Zhang D, Xiang Z. Synthesis and intrinsic enzyme-like activity of β-MnOOH nanoplates. J Taiwan Inst Chem E. 2016;59:547–52.

    CAS  Google Scholar 

  47. Chen L, Sun K, Li P, Fan X, Sun J, Ai S. DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing. Nanoscale. 2013;5:10982–8.

    CAS  PubMed  Google Scholar 

  48. Chen L, Sun B, Wang X, Qiao F, Ai S. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in l-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose. J Mater Chem B. 2013;1:2268–74.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21822407), the National Key Research and Development Program of China (2019YFC1905501, 2019YFD1002403), and the Chinese Academy of Sciences-the World Academy of Sciences (CAS-TWAS) President’s Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Chen or Hongdeng Qiu.

Ethics declarations

The study using biological samples has been approved by the Ethics Committees of Gansu Provincial Hospital and Lanzhou Institute of Chemical Physics and has been performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munyemana, J.C., Chen, J., Wei, X. et al. Deep eutectic solvent-assisted facile synthesis of copper hydroxide nitrate nanosheets as recyclable enzyme-mimicking colorimetric sensor of biothiols. Anal Bioanal Chem 412, 4629–4638 (2020). https://doi.org/10.1007/s00216-020-02712-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02712-7

Keywords

Navigation