Skip to main content
Log in

Ratiometric assay of mercury ion based on nitrogen-doped carbon dots with two different optical signals: second-order scattering and fluorescence

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ratiometric assays, which can effectively surmount external interference, have attracted extensive research interests. Herein, a novel ratiometric sensing platform for Hg2+ is designed based on nitrogen-doped carbon dots (N-CDs) with two different optical signals. Under a single excitation, N-CDs have two emission peaks around 668 nm and 412 nm, which are second-order scattering and fluorescence, respectively. Upon the addition of Hg2+, the weak scattering emission at 668 nm can be increased apparently, while the strong fluorescence intensity at 412 nm is weakened. Moreover, the ratio of scattering intensity to fluorescence intensity is linearly dependent on Hg2+ concentration (0.1–10 μM and 10–30 μM, respectively), and the detection limit is 66 nM. In addition, the ratiometric sensing mechanism is investigated in detail, which is due to the combined effect of aggregation-induced fluorescence quenching and scattering enhancement. Furthermore, the developed sensing approach holds a promising application for Hg2+ detection in actual samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49(38):6726–44.

    CAS  Google Scholar 

  2. Liu HP, Ye T, Mao CD. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed. 2007;46(34):6473–5.

    CAS  Google Scholar 

  3. Huang H, Li CG, Zhu SJ, Wang HL, Chen CL, Wang ZR, et al. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications. Langmuir. 2014;30(45):13542–8.

    CAS  PubMed  Google Scholar 

  4. Gao ZH, Lin ZH, Chen XM, Lai ZZ, Huang ZY. Carbon dots-based fluorescent probe for trace Hg2+ detection in water sample. Sensors Actuators B Chem. 2016;222:965–71.

    CAS  Google Scholar 

  5. Yan FY, Shi DC, Zheng TC, Yun KY, Zhou XG, Chen L. Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and L-cysteine by means of fluorescence “off-on” switching. Sens. Actuators, B. 2016;224:926–35.

    CAS  Google Scholar 

  6. Zhang RZ, Chen W. Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron. 2014;55:83–90.

    CAS  PubMed  Google Scholar 

  7. Li W, Zhang HR, Zheng YJ, Chen S, Liu YL, Zhuang JL, et al. Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging. Nanoscale. 2017;9(35):12976–83.

    CAS  PubMed  Google Scholar 

  8. Zhu XH, Zhao TB, Nie Z, Miao Z, Liu Y, Yao SZ. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale. 2016;8(4):2205–11.

    CAS  PubMed  Google Scholar 

  9. Lu WJ, Gao YF, Jiao Y, Shuang SM, Li CZ, Dong C. Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu2+ and its logic gate operation. Nanoscale. 2017;9(32):11545–52.

    CAS  PubMed  Google Scholar 

  10. Loo AH, Sofer Z, Bousa D, Ulbrich P, Bonanni A, Pumera M. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces. 2016;8(3):1951–7.

    CAS  PubMed  Google Scholar 

  11. Gao XH, Cui YY, Levenson RM, Chung LWR, Nie SM. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2014;22:969–76.

    CAS  Google Scholar 

  12. Li HT, He XD, Kang ZH, Huang H, Liu Y, Liu JL, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed. 2010;49(26):4430–4.

    CAS  Google Scholar 

  13. Dong YQ, Wang RX, Li GL, Chen CQ, Chi YW, Chen GN. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem. 2012;84:6220–4.

    CAS  PubMed  Google Scholar 

  14. Li N, Liu SG, Fan YZ, Ju YJ, Xiao N, Luo HQ, et al. Adenosine-derived doped carbon dots: from an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing. Anal Chim Acta. 2018;1013:63–70.

    CAS  PubMed  Google Scholar 

  15. Qian ZS, Chai LJ, Tang C, Huang YY, Chen JR, Feng H. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate. Anal Chem. 2015;87:2966–73.

    CAS  PubMed  Google Scholar 

  16. Kundu A, Layek RK, Kuila A, Nandi AK. Highly fluorescent graphene oxide-poly (vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors. ACS Appl Mater Interfaces. 2012;4(10):5576–82.

    CAS  PubMed  Google Scholar 

  17. Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta. 2013;116:71–6.

    CAS  PubMed  Google Scholar 

  18. Zhang LB, Zhu JB, Ai J, Zhou ZX, Jia XF, Wang EK. Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosens Bioelectron. 2013;39:268–73.

    PubMed  Google Scholar 

  19. Sivaraman G, Sathiyaraja V, Chellappa D. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. J Lumin. 2014;145:480–5.

    CAS  Google Scholar 

  20. Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108(9):3443–80.

    CAS  PubMed  Google Scholar 

  21. Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005;20(2):351–60.

    CAS  PubMed  Google Scholar 

  22. Lai C, Liu SY, Zhang C, Zeng GM, Huang DL, Qin L, et al. Electrochemical aptasensor based on sulfur–nitrogen codoped ordered mesoporous carbon and thymine-Hg2+-thymine mismatch structure for Hg2+ detection. ACS Sens. 2018;3(12):2566–73.

    CAS  PubMed  Google Scholar 

  23. Huang DW, Niu CG, Ruan M, Wang XY, Zeng GM, Deng CH. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles. Environ Sci Technol. 2013;47(9):4392–8.

    CAS  PubMed  Google Scholar 

  24. Huang DL, Xue WJ, Zeng GM, Wan J, Chen GM, Huang C, et al. Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: impact on enzyme activities and microbial community diversity. Water Res. 2016;106:15–25.

    CAS  PubMed  Google Scholar 

  25. Gong XM, Huang DL, Liu YG, Zeng GM, Wang RZ, Wan J, et al. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) gaudich cultivated in cadmium contaminated, Sediments. Environ. Sci. Technol. 2017;51(19):11308–16.

    CAS  PubMed  Google Scholar 

  26. Li J, Tu WW, Li HB, Han M, Lan YQ, Dai ZH, et al. In situ-generated nano-gold plasmon-enhanced photoelectrochemical aptasensing based on carboxylated perylene-functionalized graphene. Anal Chem. 2014;86:1306–12.

    CAS  PubMed  Google Scholar 

  27. Veerakumar P, Chen SM, Madhu P, Veeramani V, Hung CT, Liu SB. Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg (II) ions. ACS Appl Mater Interfaces. 2015;7(44):24810–21.

    CAS  PubMed  Google Scholar 

  28. Wei TX, Dong TT, Wang ZY, Bao JC, Tu WW, Dai ZH. Aggregation of individual sensing units for signal accumulation: conversion of liquid-phase colorimetric assay into enhanced surface-tethered electrochemical analysis. J Am Chem Soc. 2015;137(28):8880–3.

    CAS  PubMed  Google Scholar 

  29. Li JY, Fu WX, Bao JC, Wang ZY, Dai ZH. Fluorescence regulation of copper nanoclusters via DNA template manipulation toward design of a high signal-to-noise ratio biosensor. ACS Appl Mater Interfaces. 2018;10(8):6965–71.

    CAS  PubMed  Google Scholar 

  30. Chauhan K, Singh P, Singhal RK. New chitosan-thiomer: an efficient colorimetric sensor and effective sorbent for mercury at ultralow concentration. ACS Appl Mater Interfaces. 2015;7(47):26069–78.

    CAS  PubMed  Google Scholar 

  31. Lin SM, Geng S, Li N, Lin NB, Luo HQ. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor. Talanta. 2016;151:106–13.

    CAS  PubMed  Google Scholar 

  32. Zhao JJ, Huang MJ, Zhang LL, Zou MB, Chen DX, Huang Y, et al. Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions. Anal Chem. 2017;89:8044–9.

    CAS  PubMed  Google Scholar 

  33. Song W, Duan WX, Liu YH, Ye ZJ, Chen YL, Chen HL, Qi SD, Wu J, Liu D, Xiao LH, Ren CL, Chen XG. Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots, Anal. Chem. 2017;89: 13626–33.

  34. Chen JQ, Xue SF, Chen ZH, Zhang SQ, Shi GY, Zhang M. GelRed/[G3T]5/Tb3+ hybrid: a novel label-free ratiometric fluorescent probe for H2O2 and oxidase-based visual biosensing. Biosens Bioelectron. 2018;100:526–32.

    CAS  PubMed  Google Scholar 

  35. Ren W, Zhang Y, Chen HG, Gao ZF, Li NB, Luo HQ. Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg2+ using Hg2+-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification. Anal Chem. 2016;88:1385–90.

    CAS  PubMed  Google Scholar 

  36. Huang CZ, Li KA, Tong SY. Determination of nucleic acids by a resonance light-scattering technique with alpha, beta, gamma, delta-tetrakis[4-(trimothylammoniumyl)phenyl]porphine. Anal Chem. 1996;68(13):2259–63.

    CAS  PubMed  Google Scholar 

  37. Zhang WJ, Liu SG, Han L, Luo HQ, Li NB. A ratiometric fluorescent and colorimetric dual-signal sensing platform based on N-doped carbon dots for selective and sensitive detection of copper (II) and pyrophosphate ion. Sensors Actuators B Chem. 2019;283:215–21.

    CAS  Google Scholar 

  38. Wang C, Ling L, Yao YG, Song QJ. One-step synthesis of fluorescent smart thermoresponsive copper clusters: a potential nanothermometer in living cells. Nano Res. 2015;8(6):1975–86.

    CAS  Google Scholar 

  39. Xu JG, Wang ZB. Principles of fluorescence spectroscopy, third edition, 2006 75–77.

  40. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, et al. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon. 2015;83:173–9.

    CAS  Google Scholar 

  41. Gong PW, Yang ZG, Wei H, Wang ZF, Hou KM, Wang JG, et al. To lose is to gain: effective synthesis of water-soluble graphene fluoroxide quantum dots by sacrificing certain fluorine atoms from exfoliated fluorinated graphene. Carbon. 2015;83:152–61.

    CAS  Google Scholar 

  42. Shi BF, Su YB, Zhang LL, Huang MJ, Liu RJ, Zhao SL. Nitrogen and phosphorus Codoped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl Mater Interfaces. 2016;8(17):10717–25.

    CAS  PubMed  Google Scholar 

  43. Zou SY, Hou CJ, Fa HB, Zhang L, Ma Y, Dong L, et al. An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from L-cysteine. Sensors Actuators B Chem. 2017;239:1033–41.

    CAS  Google Scholar 

  44. Yang JS, Wu HX, Yang P, Hou CJ, Huo DQ. A high performance N-doped carbon quantum dots/5,5′-dithiobis-(2-nitrobenzoic acid) fluorescent sensor for biothiols detection. Sensors Actuators B Chem. 2018;255:3179–86.

    CAS  Google Scholar 

  45. Atchudana R, Edisona TNJI, Aseerb KR, Perumal S, Karthika N, Lee YR. Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens Bioelectron. 2018;99:303–11.

    Google Scholar 

  46. Du XJ, Jiang D, Liu Q, Zhu GB, Mao HP, Wang K. Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst. 2015;140(4):1253–9.

    CAS  PubMed  Google Scholar 

  47. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–81.

    CAS  PubMed  Google Scholar 

  48. Yang X, Yang MX, Pang B, Vara M, Xia YN. Gold nanomaterials at work in biomedicine. Chem Rev. 2015;115(19):10410–88.

    CAS  PubMed  Google Scholar 

  49. Guo LH, Xu Y, Ferhan AR, Chen GN, Kim DH. Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc. 2013;135(33):12338–45.

    CAS  PubMed  Google Scholar 

  50. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133(50):20168–71.

    CAS  PubMed  Google Scholar 

  51. Gogoi A, Mukherjee SP, Ramesh A, Das G. Aggregation-induced emission active metal-free chemosensing platform for highly selective turn-on sensing and bioimaging of pyrophosphate anion. Anal Chem. 2015;87:6974–9.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from the National Natural Science Foundation of China (No. 21675131) and the Natural Science Foundation of Chongqing (No. CSTC-2015jcyjB50001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Qun Luo or Nian Bing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W.J., Liu, S.G., Zhang, X.Y. et al. Ratiometric assay of mercury ion based on nitrogen-doped carbon dots with two different optical signals: second-order scattering and fluorescence. Anal Bioanal Chem 412, 4375–4382 (2020). https://doi.org/10.1007/s00216-020-02676-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02676-8

Keywords

Navigation