Skip to main content
Log in

Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a new method of CYFRA21-1 DNA (tDNA) detection based on electrochemically mediated atom transfer radical polymerization (e-ATRP) and surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) cascade polymerization and AgNP deposition is proposed. Firstly, the peptide nucleic acid (PNA) probe is captured on a gold electrode by Au-S bonds for specific recognition of tDNA. After hybridization, PNA/DNA strands provide high-density phosphate groups for the subsequent ATRP initiator by the identified carboxylate-Zr4+-phosphate chemistry. Then, a large number of monomers are successfully grafted from the DNA through the e-ATRP reaction. After that, the chain transfer agent of SI-RAFT and methacrylic acid (MAA) are connected by recognized carboxylate-Zr4+-carboxylate chemistry. Subsequently, through SI-RAFT, the resulting polymer introduces numerous aldehyde groups, which could deposit many AgNPs on tDNA through silver mirror reaction, causing significant amplification of the electrochemical signal. Under optimal conditions, this designed method exhibits a low detection limit of 0.487 aM. Moreover, the method enables us to detect DNA at the level of PCR-like and shows high selectivity and strong anti-interference ability in the presence of serum. It suggests that this new sensing signal amplification technology exhibits excellent potential of application in the early diagnosis of non-small cell lung cancer (NSCLC).

Electrochemical detection principle for CYFRA21-1 DNA based on e-ATRP and SI-RAFT signal amplification technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang Y, Xu HY, Mu JH, Guo SL, Ye L, Li DR, et al. Inactivation of ADAMTS18 by aberrant promoter hypermethylation contribute to lung cancer progression. J Cell Physiol. 2019;234:6965–75.

    Article  CAS  PubMed  Google Scholar 

  2. Tota JE, Ramanakumar AV, Franco EL. Lung cancer screening: review and performance comparison under different risk scenarios. Lung. 2014;192:55–63.

    Article  PubMed  Google Scholar 

  3. Xu Z, Zhang F, Zhu Y, Liu F, Chen X, Wei L, et al. Traditional Chinese medicine Ze-Qi-Tang formula inhibit growth of non-small-cell lung cancer cells through the p53 pathway. J Ethnopharmacol. 2019;234:180–8.

    Article  PubMed  Google Scholar 

  4. Xie Q, Yu Z, Lu Y, Fan J, Ni Y, Ma L. MicroRNA-148a-3p inhibited the proliferation and epithelial-mesenchymal transition progression of non-small-cell lung cancer via modulating Ras/MAPK/Erk signaling. J Cell Physiol. 2019;234:12786–99.

    Article  CAS  PubMed  Google Scholar 

  5. Li M, Song W, Tang Z, Lv S, Lin L, Sun H, et al. Nanoscaled poly(L-glutamic acid)/doxorubicin-amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl Mater Interfaces. 2013;5:1781–92.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Ge F, Cui W, Wang F, Yang Z, Guo Y, et al. Lung cancer circulating tumor cells isolated by the EpCAM-independent enrichment strategy correlate with cytokeratin 19-derived CYFRA21-1 and pathological staging. Clin Chim Acta. 2013;419:57–61.

    Article  CAS  PubMed  Google Scholar 

  7. Reinmuth N, Brandt B, Semik M, Kunze WP, Achatzy R, Scheld HH, et al. Prognostic impact of Cyfra21-1 and other serum markers in completely resected non-small cell lung cancer. Lung Cancer. 2002;36:265–70.

    Article  PubMed  Google Scholar 

  8. Cedres S, Nunez I, Longo M, Martinez P, Checa E, Torrejon D, et al. Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer (NSCLC). Clin Lung Cancer. 2011;12:172–9.

    Article  CAS  PubMed  Google Scholar 

  9. Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, et al. Nucleosomes and CYFRA 21-1 indicate tumor response after one cycle of chemotherapy in recurrent non-small cell lung cancer. Lung Cancer. 2009;63:128–35.

    Article  PubMed  Google Scholar 

  10. Holst B, Glenting J, Holmstrom K, Israelsen H, Vrang A, Antonsson M, Ahrne S, Madsen SM. Molecular switch controlling expression of the mannose-specific adhesin, Msa, in Lactobacillus plantarum. Appl Environ Microbiol 2019; 85.

  11. Yan J, Xie Y, Zhang Q, Gan L, Wang F, Li H, et al. Dynamic recognition and repair of DNA complex damage. J Cell Physiol. 2019;234:13014–20.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu YH, Ren CC, Yang L, Zhang XA, Liu L, Wang ZX. Performance of p16/Ki67 immunostaining, HPV E6/E7 mRNA testing, and HPV DNA assay to detect high-grade cervical dysplasia in women with ASCUS. BMC Cancer. 2019;19:9.

    Article  Google Scholar 

  13. Chen M, Hou CJ, Huo D, Yang M, Fa HB. A highly sensitive electrochemical DNA biosensor for rapid detection of CYFRA21-1, a marker of non-small cell lung cancer. Anal Methods. 2015;7:9466–73.

    Article  CAS  Google Scholar 

  14. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  15. Bai WQ, Wei YY, Zhang YC, Bao L, Li Y. Label-free and amplified electrogenerated chemiluminescence biosensing for the detection of thymine DNA glycosylase activity using DNA-functionalized gold nanoparticles triggered hybridization chain reaction. Anal Chim Acta. 2019;1061:101–9.

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Wang YY, Su HL, Mao L, Jiang XN, Zhang T, et al. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sensors Actuators B Chem. 2018;255:2910–8.

    Article  CAS  Google Scholar 

  17. Bayramoglu G, Ozalp VC, Oztekin M, Arica MY. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta. 2019;200:263–71.

    Article  CAS  PubMed  Google Scholar 

  18. Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol. 2001;19:253–7.

    Article  CAS  PubMed  Google Scholar 

  19. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed. 2004;43:6042–108.

    Article  CAS  Google Scholar 

  20. Fan C, Plaxco KW, Heeger AJ. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci U S A. 2003;100:9134–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai N, Kool ET. Fluorescent DNA-based enzyme sensors. Chem Soc Rev. 2011;40:5756–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams C, Rodriguez-Barrueco R, Silva JM, Zhang WJ, Hearn S, Elemento O, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bhardwaj J, Chaudhary N, Kim H, Jang J. Subtyping of influenza a H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Anal Chim Acta. 2019;1064:94–103.

    Article  CAS  PubMed  Google Scholar 

  24. Chen AC, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev. 2013;42:5425–38.

    Article  CAS  PubMed  Google Scholar 

  25. Ding JF, Holdcroft S. Star polymers of sodium styrenesulfonate prepared by one-pot TEMPO-controlled SFRP. Aust J Chem. 2012;65:1117–23.

    Article  CAS  Google Scholar 

  26. Hu Q, Han DX, Gan SY, Bao Y, Niu L. Surface-initiated-reversible-addition-fragmentation-chain-transfer polymerization for electrochemical DNA biosensing. Anal Chem. 2018;90:12207–13.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan L, Hua X, Wu Y, Pan X, Liu S. Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem. 2011;83:6800–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and Interface engineering with polymer brushes. Chem Rev. 2017;117:1105–318.

    Article  CAS  PubMed  Google Scholar 

  29. Hu Q, Wang Q, Sun G, Kong J, Zhang X. Electrochemically mediated surface-initiated de novo growth of polymers for amplified electrochemical detection of DNA. Anal Chem. 2017;89:9253–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Wei W, Liu S. Target-triggered polymerization for biosensing. Acc Chem Res. 2012;45:1441–50.

    Article  CAS  PubMed  Google Scholar 

  31. Hu Q, Kong J, Han D, Zhang Y, Bao Y, Zhang X, et al. Electrochemically controlled RAFT polymerization for highly sensitive electrochemical biosensing of protein kinase activity. Anal Chem. 2019;91:1936–43.

    Article  CAS  PubMed  Google Scholar 

  32. Lorandi F, Fantin M, Shanmugam S, Wang Y, Isse AA, Gennaro A, et al. Toward electrochemically mediated reversible addition-fragmentation chain-transfer (eRAFT) polymerization: can propagating radicals be efficiently electrogenerated from RAFT agents? Macromolecules. 2019;52:1479–88.

    Article  CAS  Google Scholar 

  33. Zhu LY, Guo DW, Sun LL, Huang ZH, Zhang XY, Ma WJ, et al. Activation of autophagy by elevated reactive oxygen species rather than released silver ions promotes cytotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in hematopoietic cells. Nanoscale. 2017;9:5489–98.

    Article  CAS  PubMed  Google Scholar 

  34. Yu BC, Zhou Y, Li P, Tu WG, Li P, Tang LQ, et al. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale. 2016;8:11870–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hu Q, Deng XB, Yu XH, Kong JM, Zhang XJ. One-step conjugation of aminoferrocene to phosphate groups as electroactive probes for electrochemical detection of sequence-specific DNA. Biosens Bioelectron. 2015;65:71–7.

    Article  CAS  PubMed  Google Scholar 

  36. Liu YH, Li HN, Chen W, Liu AL, Lin XH, Chen YZ. Bovine serum albumin-based probe carrier platform for electrochemical DNA biosensing. Anal Chem. 2013;85:273–7.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Lorandi F, Fantin M, Chmielarz P, Isse AA, Gennaro A, et al. Miniemulsion ARGET ATRP via interfacial and ion-pair catalysis: from ppm to ppb of residual copper. Macromolecules. 2017;50:8417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu Q, Wang Q, Jiang C, Zhang J, Kong J, Zhang X. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity. Biosens Bioelectron. 2018;110:52–7.

    Article  CAS  PubMed  Google Scholar 

  39. Dubuisson E, Yang ZY, Loh KP. Optimizing label-free DNA electrical detection on graphene platform. Anal Chem. 2011;83:2452–60.

    Article  CAS  PubMed  Google Scholar 

  40. Fantin, M., Isse, A. A., Gennaro, A., Matyjaszewski, K. Macromolecules 2015, 48, 6862–6875.

  41. Perrier S. 50th Anniversary Perspective: RAFT polymerization-a user guide. Macromolecules. 2017;50:7433–47.

    Article  CAS  Google Scholar 

  42. Wang Y, Fantin M, Park S, Gottlieb E, Fu LY, Matyjaszewski K. Electrochemically mediated reversible addition-fragmentation chain-transfer polymerization. Macromolecules. 2017;50:7872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu Q, Wang Q, Kong J, Li L, Zhang X. Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of double-stranded DNA without sequence preference. Biosens Bioelectron. 2018;101:1–6.

    Article  CAS  PubMed  Google Scholar 

  44. Liu QR, Ma KF, Wen DX, Wang QW, Sun HB, Liu QY, et al. Electrochemically mediated ATRP (eATRP) amplification for ultrasensitive detection of glucose. J Electroanal Chem. 2018;823:20–5.

    Article  CAS  Google Scholar 

  45. Wu Y, Liu S, He L. Electrochemical biosensing using amplification-by-polymerization. Anal Chem. 2009;81:7015–21.

    Article  CAS  PubMed  Google Scholar 

  46. Cai JT, Chen T, Xu YH, Wei S, Huang WG, Liu R, et al. A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes. Biosens Bioelectron. 2019;124:15–24.

    Article  PubMed  CAS  Google Scholar 

  47. Hu L, Kong JM, Han DX, Niu L, Zhang XJ. Electrochemical DNA biosensing via electrochemically controlled reversible addition-fragmentation chain transfer polymerization. ACS Sens. 2019;4:235–41.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao LJ, Zhao FQ, Zeng BZ. Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron. 2014;62:19–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Project of Tackling of Key Scientific and Technical Problems in Henan Province (192102310033), the National Natural Science Foundation of China (21974068), and Henan University of Chinese Medicine of Graduate Student Innovation Project (YJS2018B10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaixia Yang, Dazhong Wang or Jinming Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, L., Wen, D. et al. Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization. Anal Bioanal Chem 412, 4155–4163 (2020). https://doi.org/10.1007/s00216-020-02652-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02652-2

Keywords

Navigation