Skip to main content
Log in

Nanoscale plasmonic phase sensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Using the localized surface plasmon resonance (LSPR) of gold nanoparticles for sensing applications has attracted considerable interest, since it can be very sensitive, even down to a single molecule, and selective for a specific analyte molecule with a suitable surface modification. LSPR sensing is usually based on the wavelength shift of the LSPR or a Fano resonance. Here, we present a new experimental approach based on the phase of the light scattered by a single gold nanoparticle by equipping a confocal microscope with an additional interferometer arm similar to a Michelson interferometer. The detected phase depends on the shape of the nanoparticle and the refractive index of the surrounding medium and can even be detected for off-resonant excitation. This can be used as a new and sensitive detection method in LSPR sensing, allowing the detection of changes to the local refractive index or the binding of molecules to the nanoparticle surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zuloaga J, Prodan E, Nordlander P. Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano. 2010;4(9):5269–76.

    Article  CAS  Google Scholar 

  2. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B. 1999;103(40):8410–26.

    Article  CAS  Google Scholar 

  3. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.

    Article  CAS  Google Scholar 

  4. Zijlstra P, Orrit M. Single metal nanoparticles: optical detection, spectroscopy and applications. Rep Prog Phys. 2011;74(10):106401.

    Article  Google Scholar 

  5. Wackenhut F, Failla AV, Meixner AJ. Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C. 2013;117(34):17870–7.

    Article  CAS  Google Scholar 

  6. Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA. Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett. 2006;88(16):161102.

    Article  Google Scholar 

  7. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl Phys Lett. 2006;89(9):093103.

    Article  Google Scholar 

  8. Pacardo D, Neupane B, Wang G, Gu Z, Walker G, Ligler F. A temperature microsensor for measuring laser-induced heating in gold nanorods. Anal Bioanal Chem. 2015;407(3):719–25.

    Article  CAS  Google Scholar 

  9. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005;5(8):1569–74.

    Article  CAS  Google Scholar 

  10. Orendorff CJ, Gearheart L, Jana NR, Murphy CJ. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys. 2006;8(1):165–70.

    Article  CAS  Google Scholar 

  11. Chen S-Y, Mock JJ, Hill RT, Chilkoti A, Smith DR, Lazarides AA. Gold nanoparticles on polarizable surfaces as Raman scattering antennas. ACS Nano. 2010;4(11):6535–46.

    Article  CAS  Google Scholar 

  12. Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano. 2011;5(3):1995–2003.

    Article  CAS  Google Scholar 

  13. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article  CAS  Google Scholar 

  14. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108(2):494–521.

    Article  CAS  Google Scholar 

  15. Chen B, Liu C, Hayashi K. Selective terpene vapor detection using molecularly imprinted polymer coated Au nanoparticle LSPR sensor. IEEE Sensors J. 2014;14(10):3458–64.

    Article  CAS  Google Scholar 

  16. Chen Y, Ming H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012;2(1):37–49.

    Article  Google Scholar 

  17. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.

    Article  CAS  Google Scholar 

  18. Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B: Chem. 2014;195:332–51.

    Article  CAS  Google Scholar 

  19. Baciu CL, Becker J, Janshoff A, Sönnichsen C. Protein–membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8(6):1724–8.

    Article  CAS  Google Scholar 

  20. Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.

    Article  CAS  Google Scholar 

  21. Zijlstra P, Paulo PMR, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nano. 2012;7(6):379–82.

    Article  CAS  Google Scholar 

  22. Aćimović SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J, et al. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett. 2014;14(5):2636–41.

    Article  Google Scholar 

  23. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. LSPR-based nanobiosensors. Nano Today. 2009;4(3):244–51.

    Article  Google Scholar 

  24. Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev. 2011;111(6):3828–57.

    Article  CAS  Google Scholar 

  25. Hall WP, Ngatia SN, Van Duyne RP. LSPR biosensor signal enhancement using nanoparticle−antibody conjugates. J Phys Chem C. 2011;115(5):1410–4.

    Article  CAS  Google Scholar 

  26. Stobiecka M, Chalupa A. Modulation of plasmon-enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled-shell gating. J Phys Chem B. 2015;119(41):13227–35.

    Article  CAS  Google Scholar 

  27. Hepel M, Stobiecka M. Detection of oxidative stress biomarkers using functional gold nanoparticles. Fine particles in medicine and pharmacy: Springer; 2012. p. 241–281.

  28. Hepel M, Blake D, McCabe M, Stobiecka M, Coopersmith K. Assembly of gold nanoparticles induced by metal ions. Funct Nanoparticles Bioanal Nanomed Bioelectron Devices. 2012;1:207–40.

    Article  Google Scholar 

  29. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008;8(11):3983–8.

    Article  CAS  Google Scholar 

  30. van de Hulst HC. Light scattering by small particles: Courier Corporation; 1981.

  31. Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics. 2009;3(5):287–91.

    Article  CAS  Google Scholar 

  32. Prikulis J, Xu H, Gunnarsson L, Käll M, Olin H. Phase-sensitive near-field imaging of metal nanoparticles. J Appl Phys. 2002;92(10):6211–4.

    Article  CAS  Google Scholar 

  33. Yang J, Wang Z, Wang F, Xu R, Tao J, Zhang S, et al. Atomically thin optical lenses and gratings. Light-Sci Appl. 2016;5(3):e16046-e.

    Article  Google Scholar 

  34. Hauler O, Wackenhut F, Jakob LA, Stuhl A, Laible F, Fleischer M, Meixner AJ, Braun K. Direct phase mapping of the light scattered by single plasmonic nanoparticles. Nanoscale. 2020;12:1083–90.

    Article  CAS  Google Scholar 

  35. Gollmer D, Walter F, Lorch C, Novák J, Banerjee R, Dieterle J, et al. Fabrication and characterization of combined metallic nanogratings and ITO electrodes for organic photovoltaic cells. Microelectron Eng. 2014;119:122–6.

    Article  CAS  Google Scholar 

  36. Wackenhut F, Failla AV, Züchner T, Steiner M, Meixner AJ. Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods. Appl Phys Lett. 2012;100(26):263102–4.

    Article  Google Scholar 

  37. Zerulla D, Uhlig I, Szargan R, Chassé T. Competing interaction of different thiol species on gold surfaces. Surf Sci. 1998;402–404:604–8.

    Article  Google Scholar 

  38. Failla AV, Qian H, Qian H, Hartschuh A, Meixner AJ. Orientational imaging of subwavelength Au particles with higher order laser modes. Nano Lett. 2006;6(7):1374–8.

    Article  CAS  Google Scholar 

  39. Züchner T, Failla AV, Steiner M, Meixner AJ. Probing dielectric interfaces on the nanoscale with elastic scattering patterns of single gold nanorods. Opt Express. 2008;16(19):14635–44.

    Article  Google Scholar 

  40. Shervedani RK, Hatefi-Mehrjardi A, Babadi MK. Comparative electrochemical study of self-assembled monolayers of 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 2-mercaptobenzimidazole formed on polycrystalline gold electrode. Electrochim Acta. 2007;52(24):7051–60.

    Article  CAS  Google Scholar 

Download references

Funding

This study received funding from DFG grants ME 1600/13-3, BR 532/1-1 and FL670/7-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Wackenhut or Alfred J. Meixner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Advances in Direct Optical Detection with guest editors Antje J. Baeumner, Günter Gauglitz, and Jiri Homola.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wackenhut, F., Jakob, L.A., Hauler, O. et al. Nanoscale plasmonic phase sensor. Anal Bioanal Chem 412, 3405–3411 (2020). https://doi.org/10.1007/s00216-019-02340-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02340-w

Keywords

Navigation