Skip to main content
Log in

Direct capillary electrophoresis analysis of basic and acidic drugs from microliter volume of human body fluids after liquid-phase microextraction through nano-fibrous membrane

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present work, a disposable microextraction device with a polyamide 6 nano-fibrous supported liquid membrane (SLM) is employed for the pretreatment of minute volumes of biological fluids. The device is placed in a sample vial for an at-line coupling to a commercial capillary electrophoresis instrument with UV-Vis detection (CE-UV) and injections are performed fully automatically from the free acceptor solution above the SLM with no contact between the capillary and the membrane. Up to 4-fold enrichment of model basic (nortriptyline, haloperidol, loperamide, and papaverine) and acidic (ibuprofen, naproxen, ketoprofen, and diclofenac) drugs is achieved by optimizing the ratio of the donor to the acceptor solution volumes (16 to 4 μL, respectively). The actual setup enables SLM extractions from less than a drop of sample and is suitable for pretreatment of scarce human body fluids. Two unique methods are reported for efficient clean-up and enrichment of the basic and acidic drugs from capillary blood (formed as dried blood spot), serum, and urine samples, which enable their determination at therapeutic and/or toxic levels. The hyphenation of the SLM extraction with CE-UV analysis provides good repeatability (RSD, 2.4–14.9%), linearity (r2, 0.988–1.000), sensitivity (LOD, 0.017–0.22 mg L−1), and extraction recovery (ER, 20–106%) at short extraction times (10 min) and with minimum consumption of samples and reagents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ocaña-González JA, Fernández-Torres R, Bello-López MA, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta. 2016;905:8–23. https://doi.org/10.1016/j.aca.2015.10.041.

    Article  CAS  PubMed  Google Scholar 

  2. Alexovič M, Horstkotte B, Solich P, Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: approaches based on extractant drop-, plug-, film- and microflow-formation. Anal Chim Acta. 2016;906:22–40. https://doi.org/10.1016/j.aca.2015.11.038.

    Article  CAS  PubMed  Google Scholar 

  3. Alexovič M, Horstkotte B, Solich P, Sabo J. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: approaches based on impregnated membranes and porous supports. Anal Chim Acta. 2016;907:18–30. https://doi.org/10.1016/j.aca.2015.11.046.

    Article  CAS  PubMed  Google Scholar 

  4. Fang L, Deng JW, Yang YY, Wang XW, Chen BW, Liu HT, et al. Coupling solid-phase microextraction with ambient mass spectrometry: strategies and applications. TrAC-Trends Anal Chem. 2016;85:61–72. https://doi.org/10.1016/j.trac.2016.05.025.

    Article  CAS  Google Scholar 

  5. Kataoka H, Ishizaki A, Saito K. Recent progress in solid-phase microextraction and its pharmaceutical and biomedical applications. Anal Methods. 2016;8(29):5773–88. https://doi.org/10.1039/c6ay00380j.

    Article  CAS  Google Scholar 

  6. Płotka-Wasylka J, Owczarek K, Namieśnik J. Modern solutions in the field of microextraction using liquid as a medium of extraction. TrAC-Trends Anal Chem. 2016;85:46–64. https://doi.org/10.1016/j.trac.2016.08.010.

    Article  CAS  Google Scholar 

  7. Audunsson G. Aqueous/aqueous extraction by means of a liquid membrane for sample cleanup and preconcentration of amines in a flow system. Anal Chem. 1986;58:2714–23.

    Article  CAS  Google Scholar 

  8. Liu HH, Dasgupta PK. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem. 1996;68(11):1817–21.

    Article  CAS  Google Scholar 

  9. Jeannot MA, Cantwell FF. Solvent microextraction into a single drop. Anal Chem. 1996;68(13):2236–40.

    Article  CAS  Google Scholar 

  10. Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem. 1999;71(14):2650–6.

    Article  CAS  Google Scholar 

  11. Rezaee M, Assadi Y, Hosseinia MRM, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116(1-2):1–9. https://doi.org/10.1016/j.chroma.2006.03.007.

    Article  CAS  PubMed  Google Scholar 

  12. Pedersen-Bjergaard S, Rasmussen KE. Electrokinetic migration across artificial liquid membranes - new concept for rapid sample preparation of biological fluids. J Chromatogr A. 2006;1109(2):183–90.

    Article  CAS  Google Scholar 

  13. Jönsson JÅ, Mathiasson L. Liquid membrane extraction in analytical sample preparation I. Principles TrAC - Trends Anal Chem. 1999;18(5):318–25.

    Article  Google Scholar 

  14. Jönsson JÅ, Mathiasson L. Liquid membrane extraction in analytical sample preparation II. Applications TrAC - Trends Anal Chem. 1999;18(5):325–34.

    Article  Google Scholar 

  15. Kubáň P, Boček P. Direct coupling of supported liquid membranes to capillary electrophoresis for analysis of complex samples: a tutorial. Anal Chim Acta. 2013;787:10–23. https://doi.org/10.1016/j.aca.2013.04.065.

    Article  CAS  PubMed  Google Scholar 

  16. Matysik FM. Capillary batch injection - a new approach for sample introduction into short-length capillary electrophoresis with electrochemical detection. Electrochem Commun. 2006;8(6):1011–5. https://doi.org/10.1016/j.elecom.2006.04.009.

    Article  CAS  Google Scholar 

  17. Šlampová A, Kubáň P. Injections from sub-mL sample volumes in commercial capillary electrophoresis. J Chromatogr A. 2017;1497:164–71. https://doi.org/10.1016/j.chroma.2017.03.064.

    Article  CAS  PubMed  Google Scholar 

  18. Nozal L, Arce L, Simonet BM, Ríos A, Valcárcel M. In-line liquid-phase microextraction for selective enrichment and direct electrophoretic analysis of acidic drugs. Electrophoresis. 2007;28(18):3284–9. https://doi.org/10.1002/elps.200600468.

    Article  CAS  PubMed  Google Scholar 

  19. Payán MDR, Li B, Petersen NJ, Jensen H, Hansen SH, Pedersen-Bjergaard S. Nano-electromembrane extraction. Anal Chim Acta. 2013;785:60–6. https://doi.org/10.1016/j.aca.2013.04.055.

    Article  CAS  PubMed  Google Scholar 

  20. Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: a review. Anal Chim Acta. 2019;1075:1–26.

    Article  Google Scholar 

  21. Pantůčková P, Kubáň P, Boček P. A simple sample pretreatment device with supported liquid membrane for direct injection of untreated body fluids and in-line coupling to a commercial CE instrument. Electrophoresis. 2013;34(2):289–96. https://doi.org/10.1002/elps.201200369.

    Article  CAS  PubMed  Google Scholar 

  22. Dvořák M, Kubáň P. In-line coupling of supported liquid membrane extraction across nanofibrous membrane to capillary electrophoresis for analysis of basic drugs from undiluted body fluids. Electrophoresis. 2019. https://doi.org/10.1002/elps.201800487.

  23. Gjelstad A, Jensen H, Rasmussen KE, Pedersen-Bjergaard S. Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction. Anal Chim Acta. 2012;742:10–6. https://doi.org/10.1016/j.aca.2011.12.039.

    Article  CAS  PubMed  Google Scholar 

  24. Lee JY, Lee HK, Rasmussen KE, Pedersen-Bjergaard S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal Chim Acta. 2008;624(2):253–68. https://doi.org/10.1016/j.aca.2008.06.050.

    Article  CAS  PubMed  Google Scholar 

  25. Pedersen-Bjergaard S, Rasmussen KE. Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction. J Chromatogr A. 2008;1184(1-2):132–42.

    Article  CAS  Google Scholar 

  26. Babić S, Horvat AJM, Pavlović DM, Kaštelan-Macan M. Determination of pK(a) values of active pharmaceutical ingredients. TrAC-Trends Anal Chem. 2007;26(11):1043–61. https://doi.org/10.1016/j.trac.2007.09.004.

    Article  CAS  Google Scholar 

  27. Pedersen-Bjergaard S, Rasmussen KE. Liquid-phase microextraction and capillary electrophoresis of acidic drugs. Electrophoresis. 2000;21:579–85.

    Article  CAS  Google Scholar 

  28. Runkel R, Chaplin M, Boost G, Segre E, Forchiell E. Absorption, distribution, metabolism and excretion of naproxen in various laboratory animals and human subjects. J Pharm Sci. 1972;61:703–8.

    Article  CAS  Google Scholar 

  29. Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care. 2012;16:R136.

    Article  Google Scholar 

Download references

Funding

Financial support from the Czech Academy of Sciences (Institute Research Funding RVO:68081715) and the Grant Agency of the Czech Republic (Grant No. 18-13135S) is gratefully acknowledged. CRH is grateful to Universidad de Sevilla for personal funding through the V Plan Propio de Investigación de la Universidad de Sevilla. Jan Buk from Pardam is acknowledged for the donation of the PA6 nano-fibrous membranes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kubáň.

Ethics declarations

All volunteers signed free and informed consent to participate in this study in compliance with the ethical standards required by the Institute of Analytical Chemistry of the Czech Academy of Sciences, which are based on the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román-Hidalgo, C., Dvořák, M., Kubáň, P. et al. Direct capillary electrophoresis analysis of basic and acidic drugs from microliter volume of human body fluids after liquid-phase microextraction through nano-fibrous membrane. Anal Bioanal Chem 412, 181–191 (2020). https://doi.org/10.1007/s00216-019-02225-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02225-y

Keywords

Navigation