Skip to main content
Log in

Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The quantification of microplastics (MP) in environmental samples is currently a challenging task. To enable low quantification limits, an analytical method has been developed combining pressurized liquid extraction (PLE) and pyrolysis GC-MS. The automated extraction includes a pre-extraction step via methanol followed by a subsequent PLE using tetrahydrofuran. For the most frequently used synthetic polymers polyethylene (PE), polypropylene (PP), and polystyrene (PS), limits of quantification were achieved down to 0.007 mg/g. Recoveries above 80% were attained for solid matrices such as soil and sediments. The developed method was applied for MP quantification in environmental samples such as sediment, suspended matter, soil, and sewage sludge. In all these matrices, PE and PP were detected with concentrations ranging from 0.03 to 3.3 mg/g. In sewage sludge samples, all three polymers were present with concentration levels ranging between 0.08 ± 0.02 mg/g (PP) and 3.3 ± 0.3 mg/g (PE). However, especially for solid samples, the analysis of triplicates revealed elevated statistical uncertainties due to the inhomogeneous distribution of MP particles. Thus, care has to be taken when milling and homogenizing the samples due to the formation of agglomerates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep. 2015;5:17988. https://doi.org/10.1038/srep17988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blettler MCM, Ulla MA, Rabuffetti AP, Garello N. Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake. Environ Monit Assess. 2017;189(11):581. https://doi.org/10.1007/s10661-017-6305-8.

    Article  CAS  PubMed  Google Scholar 

  3. Chae Y, An Y-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut. 2018;240:387–95. https://doi.org/10.1016/j.envpol.2018.05.008.

    Article  CAS  PubMed  Google Scholar 

  4. Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186. https://doi.org/10.1016/j.envpol.2013.11.019.

    Article  CAS  Google Scholar 

  5. Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. https://doi.org/10.1016/j.watres.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  6. Peters CA, Hendrickson E, Minor EC, Schreiner K, Halbur J, Bratton SP. Pyr-GC/MS analysis of microplastics extracted from the stomach content of benthivore fish from the Texas Gulf Coast. Mar Pollut Bull. 2018;137:91–5. https://doi.org/10.1016/j.marpolbul.2018.09.049.

    Article  CAS  PubMed  Google Scholar 

  7. Vidyasakar A, Neelavannan K, Krishnakumar S, Prabaharan G, Sathiyabama Alias Priyanka T, Magesh NS, et al. Macrodebris and microplastic distribution in the beaches of Rameswaram Coral Island, Gulf of Mannar, Southeast coast of India: a first report. Mar Pollut Bull. 2018;137:610–6. https://doi.org/10.1016/j.marpolbul.2018.11.007.

    Article  CAS  PubMed  Google Scholar 

  8. Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, Laforsch C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci Rep. 2018;8(1):17950. https://doi.org/10.1038/s41598-018-36172-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haave M, Lorenz C, Primpke S, Gerdts G. Different stories told by small and large microplastics in sediment - first report of microplastic concentrations in an urban recipient in Norway. Mar Pollut Bull. 2019;141:501–13. https://doi.org/10.1016/j.marpolbul.2019.02.015.

    Article  CAS  PubMed  Google Scholar 

  10. Mani T, Primpke S, Lorenz C, Gerdts G, Burkhardt-Holm P. Microplastic pollution in benthic midstream sediments of the Rhine River. Environ Sci Technol. 2019. https://doi.org/10.1021/acs.est.9b01363.

    Article  CAS  Google Scholar 

  11. Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 2017;231(Part 2):1256–64. https://doi.org/10.1016/j.envpol.2017.08.074.

    Article  CAS  PubMed  Google Scholar 

  12. Renner G, Schmidt TC, Schram J. Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose? Curr Opin Environ Sci Health. 2018;1:55–61. https://doi.org/10.1016/j.coesh.2017.11.001.

    Article  Google Scholar 

  13. Huppertsberg S, Knepper TP. Instrumental analysis of microplastics—benefits and challenges. Anal Bioanal Chem. 2018. https://doi.org/10.1007/s00216-018-1210-8.

    Article  CAS  Google Scholar 

  14. Zarfl C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-01763-9.

    Article  CAS  Google Scholar 

  15. Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408(29):8377–91. https://doi.org/10.1007/s00216-016-9956-3.

    Article  CAS  PubMed  Google Scholar 

  16. Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87(12):6032–40. https://doi.org/10.1021/acs.analchem.5b00495.

    Article  CAS  PubMed  Google Scholar 

  17. Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal Methods. 2017;9(9):1499–511. https://doi.org/10.1039/C6AY02476A.

    Article  CAS  Google Scholar 

  18. Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA. Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res. 2018;142:426–40. https://doi.org/10.1016/j.watres.2018.05.060.

    Article  CAS  PubMed  Google Scholar 

  19. Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane array (FPA)-based Fourier transform infrared (FT-IR) imaging. Water Res. 2018;142:1–9. https://doi.org/10.1016/j.watres.2018.05.019.

    Article  CAS  PubMed  Google Scholar 

  20. Mai L, Bao L-J, Shi L, Wong CS, Zeng EY. A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res. 2018;25(12):11319–32. https://doi.org/10.1007/s11356-018-1692-0.

    Article  CAS  Google Scholar 

  21. Unice KM, Kreider ML, Panko JM. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment. Int J Environ Res Public Health. 2012;9(11):4033–55. https://doi.org/10.3390/ijerph9114033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duemichen E, Braun U, Senz R, Fabian G, Sturm H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. J Chromatogr A. 2014;1354:117–28. https://doi.org/10.1016/j.chroma.2014.05.057.

    Article  CAS  PubMed  Google Scholar 

  23. Fischer M, Scholz-Böttcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography–mass spectrometry. Environ Sci Technol. 2017;51(9):5052–60. https://doi.org/10.1021/acs.est.6b06362.

    Article  CAS  PubMed  Google Scholar 

  24. Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol. 2016. https://doi.org/10.1021/acs.est.6b00816.

    Article  CAS  Google Scholar 

  25. Eisentraut P, Dümichen E, Ruhl AS, Jekel M, Albrecht M, Gehde M, et al. Two birds with one stone—fast and simultaneous analysis of microplastics: microparticles derived from thermoplastics and tire wear. Environ Sci Technol Lett. 2018;5(10):608–13. https://doi.org/10.1021/acs.estlett.8b00446.

    Article  CAS  Google Scholar 

  26. David J, Steinmetz Z, Kučerík J, Schaumann GE. Quantitative analysis of poly(ethylene terephthalate) microplastics in soil via thermogravimetry–mass spectrometry. Anal Chem. 2018. https://doi.org/10.1021/acs.analchem.8b00355.

    Article  CAS  Google Scholar 

  27. Brand S, Schlüsener MP, Albrecht D, Kunkel U, Strobel C, Grummt T, et al. Quaternary (triphenyl-) phosphonium compounds: environmental behavior and toxicity. Water Res. 2018;136:207–19. https://doi.org/10.1016/j.watres.2018.02.032.

    Article  CAS  PubMed  Google Scholar 

  28. Wick A, Jacobs B, Kunkel U, Heininger P, Ternes TA. Benzotriazole UV stabilizers in sediments, suspended particulate matter and fish of German rivers: new insights into occurrence, time trends and persistency. Environ Pollut. 2016;212:401–12. https://doi.org/10.1016/j.envpol.2016.01.024.

    Article  CAS  PubMed  Google Scholar 

  29. García MT, Gracia I, Duque G, Lucas A, Rodríguez JF. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag. 2009;29(6):1814–8. https://doi.org/10.1016/j.wasman.2009.01.001.

    Article  CAS  PubMed  Google Scholar 

  30. Scholz-Böttcher BM, Nissenbaum A, Rullkötter J. An 18th century medication “Mumia vera aegyptica” – fake or authentic? Org Geochem. 2013;65:1–18. https://doi.org/10.1016/j.orggeochem.2013.09.011.

    Article  CAS  Google Scholar 

  31. Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7. https://doi.org/10.1016/j.watres.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  32. Bergmann M, Wirzberger V, Krumpen T, Lorenz C, Primpke S, Tekman MB, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ Sci Technol. 2017;51(19):11000–10. https://doi.org/10.1021/acs.est.7b03331.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was part of the FONA project “Microplastics in Inland Waters - Investigation and Modeling of Entries and whereabouts in the Danube Area as a Basis for Action Planning (MicBin)” funded by the German Federal Ministry of Education and Research (BMBF).

Funding

Funding by the Federal Ministry of Transport and Digital Infrastructure (BMVI) is acknowledged. Tim Lauschke is thankful for financial support by University of Koblenz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ternes.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierkes, G., Lauschke, T., Becher, S. et al. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal Bioanal Chem 411, 6959–6968 (2019). https://doi.org/10.1007/s00216-019-02066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02066-9

Keywords

Navigation