Skip to main content
Log in

A method for the minimally invasive drug monitoring of mitotane by means of volumetric absorptive microsampling for a home-based therapeutic drug monitoring

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mitotane is the only currently approved treatment for adrenocortical carcinoma (ACC), a rare endocrine malignancy. Plasma levels within the range of 14 to 20 mg L−1 are correlated with higher clinical efficacy and manageable toxicity. Because of this narrow therapeutic index and slow pharmacokinetics, therapeutic drug monitoring is an essential element of mitotane therapy. A small step towards the therapeutic drug monitoring (TDM) by volumetric absorptive microsampling (VAMS) was made with this work. A simple method enabling the patient to collect capillary blood at home for the control of mitotane blood concentration was developed and characterized using MITRA™ VAMS 20 μL microsampler. Dried blood samples were extracted prior to HPLC-UV analysis. Mitotane and the internal standard dicofol (DIC) were detected at 230 nm by ultra-violet detection after separation on a C8 reversed phase column. The assay was validated in the range of 1 to 50 mg L−1. Dried samples were stable at room temperature and at 2–8 °C for 1 week. At 37 °C, a substantial amount of the analyte was lost probably due to evaporation. Hematocrit bias, a common problem of conventional dried blood techniques, was acceptable in the tested range. However, a significant difference in recovery from spiked and authentic patient blood was detected. Comparison of mitotane concentration in dried blood samples (CDBS) by VAMS with venous plasma in patients on mitotane therapy demonstrated poor correlation of CDBS with the concentration in plasma (CP). In conclusion, application of VAMS in clinical routine for mitotane TDM appears to be of limited value in the absence of a method-specific target range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fassnacht M, Terzolo M, Allolio B, Baudin E, Haak H, Berruti A, et al. Combination chemotherapy in advanced adrenocortical carcinoma. N Engl J Med. 2012;366(23):2189–97.

    Article  CAS  PubMed  Google Scholar 

  2. Cueto C, Brown JH. The chemical fractionation of an adrenocorticolytic drug. Endocrinology. 1958;62(3):326–33. https://doi.org/10.1210/endo-62-3-326.

    Article  CAS  PubMed  Google Scholar 

  3. Cueto C, Brown JH, Richardson AP Jr. Biological studies on an adrenocorticolytic agent and the isolation of the active components. Endocrinology. 1958;62(3):334–9. https://doi.org/10.1210/endo-62-3-334.

    Article  CAS  PubMed  Google Scholar 

  4. Terzolo M, Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA, et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med. 2007;356(23):2372–80. https://doi.org/10.1056/NEJMoa063360.

    Article  CAS  PubMed  Google Scholar 

  5. Berruti A, Fassnacht M, Baudin E, Hammer G, Haak H, Leboulleux S, et al. Adjuvant therapy in patients with adrenocortical carcinoma: a position of an international panel. J Clin Oncol. 2010;28(23):e401–2. https://doi.org/10.1200/JCO.2009.27.5958.

    Article  PubMed  Google Scholar 

  6. European Medicines Agency. Lysodren: summary of product characteristics. 2009, http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000521/WC500047235.pdf. Accessed Apr 2018.

  7. Kasperlik-Zaluska AA, Cichocki A. Clinical role of determination of plasma mitotane and its metabolites levels in patients with adrenal cancer: results of a long-term follow-up. J Exp Ther Oncol. 2005;5(2):125–32.

    CAS  PubMed  Google Scholar 

  8. Hermsen IG, Fassnacht M, Terzolo M, Houterman S, den Hartigh J, Leboulleux S, et al. Plasma concentrations of o,p′DDD, o,p′DDA, and o,p′DDE as predictors of tumor response to mitotane in adrenocortical carcinoma: results of a retrospective ENS@T multicenter study. J Clin Endocrinol Metab. 2011;96(6):1844–51. https://doi.org/10.1210/jc.2010-2676.

    Article  CAS  PubMed  Google Scholar 

  9. Hescot S, Paci A, Seck A, Slama A, Viengchareun S, Trabado S, et al. The lack of antitumor effects of o,p′DDA excludes its role as an active metabolite of mitotane for adrenocortical carcinoma treatment. Horm Cancer. 2014;5(5):312–23. https://doi.org/10.1007/s12672-014-0189-7.

    Article  CAS  PubMed  Google Scholar 

  10. Megerle F, Herrmann W, Schloetelburg W, Ronchi CL, Pulzer A, Quinkler M, et al. Mitotane monotherapy in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2018;103(4):1686–95. https://doi.org/10.1210/jc.2017-02591.

    Article  PubMed  Google Scholar 

  11. Baudin E, Pellegriti G, Bonnay M, Penfornis A, Laplanche A, Vassal G, et al. Impact of monitoring plasma 1,1-dichlorodiphenildichloroethane (o,p'DDD) levels on the treatment of patients with adrenocortical carcinoma. Cancer. 2001;92(6):1385–92.

    Article  CAS  PubMed  Google Scholar 

  12. van Slooten H, Moolenaar AJ, van Seters AP, Smeenk D. The treatment of adrenocortical carcinoma with o,p′-DDD: prognostic implications of serum level monitoring. Eur J Cancer Clin Oncol. 1984;20(1):47–53.

    Article  PubMed  Google Scholar 

  13. Feliu C, Cazaubon Y, Guillemin H, Vautier D, Oget O, Millart H, et al. Therapeutic drug monitoring of mitotane: analytical assay and patient follow-up. Biomed Chromatogr. 2017;31(11):e3993. https://doi.org/10.1002/bmc.3993.

    Article  CAS  Google Scholar 

  14. Daffara F, De Francia S, Reimondo G, Zaggia B, Aroasio E, Porpiglia F, et al. Prospective evaluation of mitotane toxicity in adrenocortical cancer patients treated adjuvantly. Endocr Relat Cancer. 2008;15(4):1043–53. https://doi.org/10.1677/ERC-08-0103.

    Article  CAS  PubMed  Google Scholar 

  15. Terzolo M, Pia A, Berruti A, Osella G, Ali A, Carbone V, et al. Low-dose monitored mitotane treatment achieves the therapeutic range with manageable side effects in patients with adrenocortical cancer. J Clin Endocrinol Metab. 2000;85(6):2234–8. https://doi.org/10.1210/jcem.85.6.6619.

    Article  CAS  PubMed  Google Scholar 

  16. Faggiano A, Leboulleux S, Young J, Schlumberger M, Baudin E. Rapidly progressing high o,p′DDD doses shorten the time required to reach the therapeutic threshold with an acceptable tolerance: preliminary results. Clin Endocrinol. 2006;64(1):110–3. https://doi.org/10.1111/j.1365-2265.2005.02403.x.

    Article  CAS  Google Scholar 

  17. Mauclere-Denost S, Leboulleux S, Borget I, Paci A, Young J, Al Ghuzlan A, et al. High-dose mitotane strategy in adrenocortical carcinoma: prospective analysis of plasma mitotane measurement during the first 3 months of follow-up. Eur J Endocrinol. 2012;166(2):261–8. https://doi.org/10.1530/EJE-11-0557.

    Article  CAS  PubMed  Google Scholar 

  18. Arshad U, Taubert M, Kurlbaum M, Frechen S, Herterich S, Megerle F, et al. Enzyme autoinduction by mitotane supported by population pharmacokinetic modelling in a large cohort of adrenocortical carcinoma patients. Eur J Endocrinol. 2018;179(5):287–97.

    Article  CAS  PubMed  Google Scholar 

  19. Kerkhofs TM, Derijks LJ, Ettaieb H, Den Hartigh J, Neef K, Gelderblom H, et al. Development of a pharmacokinetic model of mitotane: toward personalized dosing in adrenocortical carcinoma. Ther Drug Monit. 2015;37(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  20. Kerkhofs T, Baudin E, Terzolo M, Allolio B, Chadarevian R, Mueller H, et al. Comparison of two mitotane starting dose regimens in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(12):4759–67.

    Article  CAS  PubMed  Google Scholar 

  21. Fassnacht M, Kroiss M, Allolio B. Update in adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(12):4551–64.

    Article  CAS  PubMed  Google Scholar 

  22. Andersen A, Kasperlik-Zaluska AA, Warren DJ. Determination of mitotane (o,p-DDD) and its metabolites o,p-DDA and o,p-DDE in plasma by high-performance liquid chromatography. Ther Drug Monit. 1999;21(3):355–9.

    Article  CAS  PubMed  Google Scholar 

  23. Garg MB, Sakoff JA, Ackland SP. A simple HPLC method for plasma level monitoring of mitotane and its two main metabolites in adrenocortical cancer patients. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(23):2201–5. https://doi.org/10.1016/j.jchromb.2011.06.001.

    Article  CAS  Google Scholar 

  24. De Francia S, Pirro E, Zappia F, De Martino F, Sprio AE, Daffara F, et al. A new simple HPLC method for measuring mitotane and its two principal metabolites tests in animals and mitotane-treated patients. J Chromatogr B Anal Technol Biomed Life Sci. 2006;837(1–2):69–75. https://doi.org/10.1016/j.jchromb.2006.04.005.

    Article  CAS  Google Scholar 

  25. Mornar A, Sertic M, Turk N, Nigovic B, Korsic M. Simultaneous analysis of mitotane and its main metabolites in human blood and urine samples by SPE-HPLC technique. Biomed Chromatogr. 2012;26(11):1308–14. https://doi.org/10.1002/bmc.2696.

    Article  CAS  PubMed  Google Scholar 

  26. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  PubMed  Google Scholar 

  27. Enderle Y, Foerster K, Burhenne J. Clinical feasibility of dried blood spots: analytics, validation, and applications. J Pharm Biomed Anal. 2016;130:231–43. https://doi.org/10.1016/j.jpba.2016.06.026.

    Article  CAS  PubMed  Google Scholar 

  28. De Kesel PM, Lambert WE, Stove CP. Does volumetric absorptive microsampling eliminate the hematocrit bias for caffeine and paraxanthine in dried blood samples? A comparative study. Anal Chim Acta. 2015;881:65–73. https://doi.org/10.1016/j.aca.2015.04.056.

    Article  CAS  PubMed  Google Scholar 

  29. Denniff P, Spooner N. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem. 2014;86(16):8489–95. https://doi.org/10.1021/ac5022562.

    Article  CAS  PubMed  Google Scholar 

  30. Kok MGM, Fillet M. Volumetric absorptive microsampling: current advances and applications. J Pharm Biomed Anal. 2018;147:288–96. https://doi.org/10.1016/j.jpba.2017.07.029.

    Article  CAS  PubMed  Google Scholar 

  31. European Medicines Agency. Guideline on Bioanalytical Method Validation. 2015, https://www.ema.europa.eu/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed Mar 2018.

  32. Inouye M, Mio T, Sumino K. Use of GC/MS/SIM for rapid determination of plasma levels of o,p′-DDD, o,p′-DDE and o,p′-DDA. Clin Chim Acta. 1987;170(2–3):305–14.

    Article  CAS  PubMed  Google Scholar 

  33. Evans C, Arnold M, Bryan P, Duggan J, James CA, Li W, et al. Implementing dried blood spot sampling for clinical pharmacokinetic determinations: considerations from the IQ Consortium Microsampling Working Group. AAPS J. 2015;17(2):292–300. https://doi.org/10.1208/s12248-014-9695-3.

    Article  PubMed  Google Scholar 

  34. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.

    Article  CAS  Google Scholar 

  35. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

    Google Scholar 

  36. McBride GB. A proposal for strength of agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Report; 2005.

  37. Shawa H, Deniz F, Bazerbashi H, Hernandez M, Vassilopoulou-Sellin R, Jimenez C, et al. Mitotane-induced hyperlipidemia: a retrospective cohort study. Int J Endocrinol. 2013;2013:624962. https://doi.org/10.1155/2013/624962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benecke R, Vetter B, De Zeeuw RA. Rapid micromethod for the analysis of mitotane and its metabolite in plasma by gas chromatography with electron-capture detection. J Chromatogr. 1987;417(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  39. U.S. Department of Health and Human Services Agency for Toxic Substances and Disease Registry. Toxicological profile for DDT, DDE, and DDD. 2002, https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf. Accessed Mar 2018.

  40. Xie I, Anderson M, Wang M, Xue L, Breidinger S, Goykhman D, et al. Extractability-mediated stability bias and hematocrit impact: high extraction recovery is critical to feasibility of volumetric adsorptive microsampling (VAMS) in regulated bioanalysis. J Pharm Biomed Anal. 2018;156:58–66.

    Article  CAS  PubMed  Google Scholar 

  41. Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal. 2019;163:188–96.

    Article  CAS  PubMed  Google Scholar 

  42. Velghe S, Stove CP. Volumetric absorptive microsampling as an alternative tool for therapeutic drug monitoring of first-generation anti-epileptic drugs. Anal Bioanal Chem. 2018;410(9):2331–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Horphag Research (Europe) Ltd. and in part by the German Research Council (DFG, German Research Foundation) Projektnummer: 314061271 – TRR 205 as well as by an individual grant to M.F. (FA466/4-2) and M.K. (KR4371/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Scherf-Clavel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

This study was part of the European Network for the Study of Adrenal Tumors (ENSAT) registry, which has been approved by the ethics committee of the University of Würzburg (approval number 86/03 and 88/11).

Informed consent

All patients provided written informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2.43 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedl, B., Kurlbaum, M., Kroiss, M. et al. A method for the minimally invasive drug monitoring of mitotane by means of volumetric absorptive microsampling for a home-based therapeutic drug monitoring. Anal Bioanal Chem 411, 3951–3962 (2019). https://doi.org/10.1007/s00216-019-01868-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01868-1

Keywords

Navigation