Skip to main content
Log in

A ratiometric fluorescence sensor for ultra-sensitive detection of trypsin inhibitor in soybean flour using gold nanocluster@carbon nitride quantum dots

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanocluster@carbon nitride quantum dot nanocomposites protected by bovine serum albumin (BSA-AuNC@CNQDs) were designed as a ratiometric fluorescence nanosensor for ultra-sensitive detection of trypsin inhibitor (TI). CNQDs were prepared via thermal treatment of carbon nitride powder. BSA-CNQDs acted as templates to synthesize BSA-AuNC@CNQDs with dual-emission peaks at 450 and 650 nm. Trypsin can catalyze the hydrolysis of BSA and decompose BSA-AuNC@CNQDs resulting in fluorescence quenching. The fluorescence quenching at 650 nm was prevented by the addition of TI to inhibit the activity of trypsin. The nanosensor-trypsin system showed a satisfactory ability toward TI detection. The ratiometric responses (the ratio of intensity at 650 to 450 nm, I650/I450) had an excellent linearity (R2 = 0.981) with logarithmic values of TI concentrations in the broad range of 1–10,000 ng/mL. The limit of detection (LOD, 0.089 ng/mL) indicates ultra-sensitive detection of TI can be achieved. Additionally, TI in soybean flour was detected by the proposed ratiometric method with satisfactory recoveries (98.15–105.52%) and less than 6% of coefficient of variation. This study reveals that BSA-AuNC@CNQDs have potential applications in detection of TI in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coscueta ER, Pintado ME, Picó GA, Knobel G, Boschetti CE, Malpiedi LP, et al. Continuous method to determine the trypsin inhibitor activity in soybean flour. Food Chem. 2017;214:156–61.

    Article  CAS  PubMed  Google Scholar 

  2. Dong M, Qi H, Ding S, Li M. Electrochemical determination of trypsin using a heptapeptide substrate self-assembled on a gold electrode. Microchim Acta. 2015;182(1–2):43–9.

    Article  CAS  Google Scholar 

  3. Park EJ, Reid KR, Tang W, Kennedy RT, Kopelman R. Ratiometric fiber optic sensors for the detection of inter- and intra-cellular dissolved oxygen. J Mater Chem. 2005;15(27–28):2913–9.

    Article  CAS  Google Scholar 

  4. Miao P, Liu T, Li X, Ning L, Yin J, Han K. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens Bioelectron. 2013;49:20–4.

    Article  CAS  PubMed  Google Scholar 

  5. Kaminska A, Forster RJ, Keyes TE. The impact of adsorption of bovine pancreatic trypsin inhibitor on CTAB-protected gold nanoparticle arrays: a Raman spectroscopic comparison with solution denaturation. J Raman Spectrosc. 2010;41(2):130–5.

    CAS  Google Scholar 

  6. Hu X, Shi J, Shi Y, Zou X, Tahir HE, Holmes M, et al. A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system. Meat Sci. 2019;147:127–34.

    Article  CAS  PubMed  Google Scholar 

  7. Shi F, Wang L, Li Y, Zhang Y, Su X. A simple “turn-on” detection platform for trypsin activity and inhibitor screening based on N-acetyl-l-cysteine capped CdTe quantum dots. Sensors Actuators B Chem. 2018;255:2733–41.

    Article  CAS  Google Scholar 

  8. Liu C, Chang H. Protein-conjugated quantum dots for detecting trypsin and trypsin inhibitor through fluorescence resonance energy transfer. Open Anal Chem J. 2007;1(1):1–6.

    Article  Google Scholar 

  9. Gao X, Tang G, Li Y, Su X. A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots. Anal Chim Acta. 2012;743(3):131–6.

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Guo S, Yuan Z, Lu C. Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sensors Actuators B Chem. 2016;241:821–7.

    Article  CAS  Google Scholar 

  11. Wu P, Hou X, Xu JJ, Chen HY. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale. 2016;8(16):8427–42.

    Article  CAS  PubMed  Google Scholar 

  12. Wang ML, Yu-Zhen LI, Huang ZH, Gao LZ. Research progress of organic, inorganic and nano-composite fluorescent materials. Chem Res Appl. 2015;27(6):788–95.

    CAS  Google Scholar 

  13. Wang W, Yu JC, Shen Z, Chan DK, Gu T. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem Commun. 2014;50(70):10148–50.

    Article  CAS  Google Scholar 

  14. Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, et al. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron. 2015;68:210–7.

    Article  CAS  PubMed  Google Scholar 

  15. Cao X, Ma J, Lin Y, Yao B, Li F, Wen W, et al. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim Acta A Mol Biomol Spectrosc. 2015;151(1):875–80.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Wang Q, Ma J, Li C-W, Yang M, Yi C. A ratiometric fluorescent core-shell nanoprobe for sensing and imaging of zinc(II) in living cell and zebrafish. Microchim Acta. 2018;185(11):523.

    Article  CAS  Google Scholar 

  17. Zhan Y, Liu Z, Liu Q, Huang D, Wei Y, Hu Y, et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging application. New J Chem. 2017;41(10).

  18. Shi Y, Chen Z, Cheng X, Pan Y, Zhang H, Zhang Z, et al. A novel dual-emission ratiometric fluorescent nanoprobe for sensing and intracellular imaging of Zn2+. Biosens Bioelectron. 2014;61:397–403.

    Article  CAS  PubMed  Google Scholar 

  19. Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen X, et al. Switch-on fluorescence sensing of glutathione in food samples based on a g-CNQDs-Hg2+ chemosensor. J Agric Food Chem. 2015;63(6):1747–55.

    Article  CAS  PubMed  Google Scholar 

  20. Hu X, Shi J, Shi Y, Zou X, Arslan M, Zhang W, et al. Use of a smartphone for visual detection of melamine in milk based on Au@carbon quantum dots nanocomposites. Food Chem. 2019;272:58–65.

    Article  CAS  PubMed  Google Scholar 

  21. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888.

    Article  CAS  PubMed  Google Scholar 

  22. Hu L, Han S, Parveen S, Yuan Y, Zhang L, Xu G. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens Bioelectron. 2012;32(1):297–9.

    Article  CAS  PubMed  Google Scholar 

  23. Standards S. Animal feeding stuffs. Determination of trypsin inhibitor activity of soya products: ISO International Standard; 2001.

  24. Shee C, Sharma AK. Purification and characterization of a trypsin inhibitor from seeds of Murraya koenigii. J Enzyme Inhib Med Chem. 2007;22(1):115–20.

    Article  CAS  PubMed  Google Scholar 

  25. Xie H, Dong J, Duan J, Waterhouse GIN, Hou J, Ai S. Visual and ratiometric fluorescence detection of Hg2+ based on a dual-emission carbon dots-gold nanoclusters nanohybrid. Sensors Actuators B Chem. 2018;259:1082–9.

    Article  CAS  Google Scholar 

  26. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun. 2015;51(61):12251–3.

    Article  CAS  Google Scholar 

  27. Barman S, Sadhukhan M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem. 2012;22(41):21832–7.

    Article  CAS  Google Scholar 

  28. Liu T, Li N, Dong JX, Zhang Y, Fan YZ, Lin SM, et al. A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron. 2017;87:772–8.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao D, Chen C, Zhao J, Sun J, Yang X. Label-free fluorescence turn-on strategy for trypsin activity based on thiolate-protected gold nanoclusters with bovine serum albumin as the substrate. Sensors Actuators B Chem. 2017;247:392–9.

    Article  CAS  Google Scholar 

  30. İE Ö, Akten ED, Pekcan Ö. Structural analysis of peptide fragments following the hydrolysis of bovine serum albumin by trypsin and chymotrypsin. J Biomol Struct Dyn 2016;34(5):1092–1100.

    Article  CAS  Google Scholar 

  31. Shaoyun W, Biao S, Wei L, Jing H, Pingfan R. Isolation of a trypsin-chymotrypsin inhibitor and its functional properties. Prep Biochem. 2014;44(6):545–57.

    Article  CAS  Google Scholar 

  32. Wang M, Su D, Wang G, Su X. A fluorometric sensing method for sensitive detection of trypsin and its inhibitor based on gold nanoclusters and gold nanoparticles. Anal Bioanal Chem. 2018;410(26):6891–900.

    Article  CAS  PubMed  Google Scholar 

  33. Yu M, Wang H, Fu F, Li L, Li J, Li G, et al. Dual-recognition Förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles. Anal Chem. 2017;89(7).

  34. Wu M, Wang X, Wang K, Guo Z. An ultrasensitive fluorescent nanosensor for trypsin based on upconversion nanoparticles. Talanta. 2017;174:797–802.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Zhang P, Zhang S, Zhu C. Label-free and real-time monitoring of trypsin activity in living cells by quantum-dot-based fluorescent sensors. Anal Methods. 2014;6(8):2499–505.

    Article  CAS  Google Scholar 

  36. Wang F, Zhu Y, Xu J, Xu Z, Cheng G, Zhang W. Highly selective and ratiometric fluorescent nanoprobe for the detection of cysteine and its application in test strips. Anal Bioanal Chem. 2018;410(20):4875–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (31671844, 31601543, and 31601543), National Key Technology Research and Development Program of China (2018YFD0400803, 2017YFC1600805, 2017YFC1600806, 2016YFD0401104, and 2017YFD0400102-3), and Six Talent Peaks Project in Jiangsu Province (GDZB-016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxiao Li or Xiaobo Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not applicable for the nature of this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Shi, J., Shi, Y. et al. A ratiometric fluorescence sensor for ultra-sensitive detection of trypsin inhibitor in soybean flour using gold nanocluster@carbon nitride quantum dots. Anal Bioanal Chem 411, 3341–3351 (2019). https://doi.org/10.1007/s00216-019-01806-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01806-1

Keywords

Navigation