Skip to main content
Log in

Protein stability analysis in ionic liquids by 19F NMR

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ionic liquids have been extensively used as environmentally friendly solvents for enzymatic reactions and other biological systems. Understanding the mechanism of how ionic liquids affect protein stability is crucial for the biological reaction processes and protein storage using ionic liquids as solvents. Although effects of ionic liquids on protein stability have been studied, equilibrium thermodynamics of protein stability in ionic liquids has not been quantitatively measured. Herein, we utilized 19F NMR to measure the equilibrium thermodynamics of protein stability in ionic liquid [C4-mim]Br. Our results show that proteins are significantly destabilized in [C4-mim]Br ionic liquids. Our results suggest that 19F NMR provides a simple and effective way to study the thermodynamics of protein stability in ionic liquids. 19F NMR will be applicable to facilitate the protein–protein interaction study in ionic liquids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99(8):2071–84.

    Article  CAS  PubMed  Google Scholar 

  2. Lozano P, De Diego T, Carrie D, Vaultier M, Iborra JL. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett. 2001;23(18):1529–33.

    Article  CAS  Google Scholar 

  3. van Rantwijk F, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev. 2007;107(6):2757–85.

    Article  CAS  PubMed  Google Scholar 

  4. Dominguez de Maria P. “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew Chem Int Ed Engl. 2008;47(37):6960–8.

    Article  CAS  PubMed  Google Scholar 

  5. Tseng MC, Tseng MJ, Chu YH. Affinity ionic liquid. Chem Commun. 2009;48(48):7503–5.

    Article  CAS  Google Scholar 

  6. Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111(5):3508–76.

    Article  CAS  PubMed  Google Scholar 

  7. Sun L, Tao D, Han B, Ma J, Zhu G, Liang Z, et al. Ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate for shotgun membrane proteomics. Anal Bioanal Chem. 2011;399(10):3387–97.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Q, Fang F, Liang Y, Yuan H, Yang K, Wu Q, et al. 1-Dodecyl-3-methylimidazolium chloride-assisted sample preparation method for efficient integral membrane proteome analysis. Anal Chem. 2014;86(15):7544–50.

    Article  CAS  PubMed  Google Scholar 

  9. Sivapragasam M, Moniruzzaman M, Goto M. Recent advances in exploiting ionic liquids for biomolecules: solubility, stability and applications. Biotechnol J. 2016;11(8):1000–13.

    Article  CAS  PubMed  Google Scholar 

  10. Sui Z, Weng Y, Zhao Q, Deng N, Fang F, Zhu X, et al. Ionic liquid-based method for direct proteome characterization of velvet antler cartilage. Talanta. 2016;161:541–6.

    Article  CAS  PubMed  Google Scholar 

  11. Itoh T. Ionic liquids as tool to improve enzymatic organic synthesis. Chem Rev. 2017;117(15):10567–607.

    Article  CAS  PubMed  Google Scholar 

  12. Jin L, Yu X, Peng C, Guo Y, Zhang L, Xu Q, et al. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: selective delignification and enhanced enzymatic saccharification. Bioresour Technol. 2018;270:537–44.

    Article  CAS  PubMed  Google Scholar 

  13. Du Z, Yu YL, Wang JH. Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system. Chemistry. 2007;13(7):2130–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ge LY, Wang XT, Tan SN, Tsai HH, Yong JWH, Hua L. A novel method of protein extraction from yeast using ionic liquid solution. Talanta. 2010;81(4–5):1861–4.

    Article  CAS  PubMed  Google Scholar 

  15. Tao D, Qiao X, Sun L, Hou C, Gao L, Zhang L, et al. Development of a highly efficient 2-D system with a serially coupled long column and its application in identification of rat brain integral membrane proteins with ionic liquids-assisted solubilization and digestion. J Proteome Res. 2011;10(2):732–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lin X, Wang Y, Zeng Q, Ding X, Chen J. Extraction and separation of proteins by ionic liquid aqueous two-phase system. Analyst. 2013;138(21):6445–53.

    Article  CAS  PubMed  Google Scholar 

  17. Zeng Q, Wang Y, Li N, Huang X, Ding X, Lin X, et al. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid. Talanta. 2013;116:409–16.

    Article  CAS  PubMed  Google Scholar 

  18. Summers CA, Flowers RA 2nd. Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Sci. 2000;9(10):2001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lau RM, Sorgedrager MJ, Carrea G, van Rantwijk F, Secundo F, Sheldon RA. Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem. 2004;6(9):483–7.

    Article  CAS  Google Scholar 

  20. De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL. Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules. 2005;6(3):1457–64.

    Article  CAS  PubMed  Google Scholar 

  21. Constantinescu D, Weingartner H, Herrmann C. Protein denaturation by ionic liquids and the Hofmeister series: a case study of aqueous solutions of ribonuclease A. Angew Chem Int Ed. 2007;46(46):8887–9.

    Article  CAS  Google Scholar 

  22. Byrne N, Wang LM, Belieres JP, Angell CA. Reversible folding-unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chem Commun. 2007;26(26):2714–6.

    Article  Google Scholar 

  23. Fujita K, MacFarlane DR, Forsyth M, Yoshizawa-Fujita M, Murata K, Nakamura N, et al. Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. Biomacromolecules. 2007;8(7):2080–6.

    Article  CAS  PubMed  Google Scholar 

  24. Byrne N, Angell CA. Protein unfolding, and the “tuning in” of reversible intermediate states, in protic ionic liquid media. J Mol Biol. 2008;378(3):707–14.

    Article  CAS  PubMed  Google Scholar 

  25. Fujita K, Ohno H. Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids. Biopolymers. 2010;93(12):1093–9.

    Article  CAS  PubMed  Google Scholar 

  26. Constatinescu D, Herrmann C, Weingartner H. Patterns of protein unfolding and protein aggregation in ionic liquids. Phys Chem Chem Phys. 2010;12(8):1756–63.

    Article  CAS  PubMed  Google Scholar 

  27. Moniruzzaman M, Kamiya N, Goto M. Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem. 2010;8(13):2887–99.

    Article  CAS  PubMed  Google Scholar 

  28. Huang JL, Noss ME, Schmidt KM, Murray L, Bunagan MR. The effect of neat ionic liquid on the folding of short peptides. Chem Commun. 2011;47(28):8007–9.

    Article  CAS  Google Scholar 

  29. Sankaranarayanan K, Sathyaraj G, Nair BU, Dhathathreyan A. Reversible and irreversible conformational transitions in myoglobin: role of hydrated amino acid ionic liquid. J Phys Chem B. 2012;116(14):4175–80.

    Article  CAS  PubMed  Google Scholar 

  30. Dabirmanesh B, Khajeh K, Ranjbar B, Ghazi F, Heydari A. Inhibition mediated stabilization effect of imidazolium based ionic liquids on alcohol dehydrogenase. J Mol Liq. 2012;170:66–71.

    Article  CAS  Google Scholar 

  31. Weaver KD, Vrikkis RM, Van Vorst MP, Trullinger J, Vijayaraghavan R, Foureau DM, et al. Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Phys Chem Chem Phys. 2012;14(2):790–801.

    Article  CAS  PubMed  Google Scholar 

  32. Goldfeder M, Fishman A. Modulating enzyme activity using ionic liquids or surfactants. Appl Microbiol Biotechnol. 2014;98(2):545–54.

    Article  CAS  PubMed  Google Scholar 

  33. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ. Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc. 2003;125(14):4125–31.

    Article  CAS  PubMed  Google Scholar 

  34. Fujita K, Forsyth M, MacFarlane DR, Reid RW, Elliott GD. Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol Bioeng. 2006;94(6):1209–13.

    Article  CAS  PubMed  Google Scholar 

  35. Klahn M, Lim GS, Wu P. How ion properties determine the stability of a lipase enzyme in ionic liquids: a molecular dynamics study. Phys Chem Chem Phys. 2011;13(41):18647–60.

    Article  CAS  PubMed  Google Scholar 

  36. Rodrigues JV, Prosinecki V, Marrucho I, Rebelo LPN, Gomes CM. Protein stability in an ionic liquid milieu: on the use of differential scanning fluorimetry. Phys Chem Chem Phys. 2011;13(30):13614–6.

    Article  CAS  PubMed  Google Scholar 

  37. Attri P, Venkatesu P. Influence of protic ionic liquids on the structure and stability of succinylated Con A. Int J Biol Macromol. 2012;51(1–2):119–28.

    Article  CAS  PubMed  Google Scholar 

  38. Attri P, Venkatesu P, Kumar A. Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes. Org Biomol Chem. 2012;10(37):7475–8.

    Article  CAS  PubMed  Google Scholar 

  39. Figueiredo AM, Sardinha J, Moore GR, Cabrita EJ. Protein destabilisation in ionic liquids: the role of preferential interactions in denaturation. Phys Chem Chem Phys. 2013;15(45):19632–43.

    Article  CAS  PubMed  Google Scholar 

  40. Nordwald EM, Armstrong GS, Kaar JL. NMR-guided rational engineering of an ionic-liquid-tolerant lipase. ACS Catal. 2014;4(11):4057–64.

    Article  CAS  Google Scholar 

  41. Jha I, Attri P, Venkatesu P. Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Phys Chem Chem Phys. 2014;16(12):5514–26.

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Rani A, Venkatesu P, Kumar A. Quantitative evaluation of the ability of ionic liquids to offset the cold-induced unfolding of proteins. Phys Chem Chem Phys. 2014;16(30):15806–10.

    Article  CAS  PubMed  Google Scholar 

  43. Bisht M, Kumar A, Venkatesu P. Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids. Int J Biol Macromol. 2015;81:1074–81.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar A, Rani A, Venkatesu P. A comparative study of the effects of the Hofmeister series anions of the ionic salts and ionic liquids on the stability of alpha-chymotrypsin. New J Chem. 2015;39(2):938–52.

    Article  CAS  Google Scholar 

  45. Lesch V, Heuer A, Tatsis VA, Holm C, Smiatek J. Peptides in the presence of aqueous ionic liquids: tunable co-solutes as denaturants or protectants? Phys Chem Chem Phys. 2015;17(39):26049–53.

    Article  CAS  PubMed  Google Scholar 

  46. Jha I, Venkatesu P. Unprecedented improvement in the stability of hemoglobin in the presence of promising green solvent 1-allyl-3-methylimidazolium chloride. ACS Sustain Chem Eng. 2016;4(2):413–21.

    Article  CAS  Google Scholar 

  47. Bisht M, Venkatesu P. Influence of cholinium-based ionic liquids on the structural stability and activity of alpha-chymotrypsin. New J Chem. 2017;41(22):13902–11.

    Article  CAS  Google Scholar 

  48. de Borba TM, Machado TB, Brandelli A, Kalil SJ. Thermal stability and catalytic properties of protease from Bacillus sp P45 active in organic solvents and ionic liquid. Biotechnol Prog. 2018;34(5):1102–8.

    Article  CAS  PubMed  Google Scholar 

  49. Satish L, Millan S, Sasidharan VV, Sahoo H. Molecular level insight into the effect of triethyloctylammonium bromide on the structure, thermal stability, and activity of bovine serum albumin. Int J Biol Macromol. 2018;107:186–93.

    Article  CAS  PubMed  Google Scholar 

  50. Warner L, Gjersing E, Follett SE, Elliott KW, Dzyuba SV, Varga K. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy. Biochem Biophys Rep. 2016;8:75–80.

    PubMed  PubMed Central  Google Scholar 

  51. Danielson MA, Falke JJ. Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct. 1996;25:163–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ropson IJ, Frieden C. Dynamic NMR spectral-analysis and protein folding: identification of a highly populated folding intermediate of rat intestinal fatty acid-binding protein by 19F NMR. Proc Natl Acad Sci U S A. 1992;89(15):7222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Becktel WJ, Schellman JA. Protein stability curves. Biopolymers. 1987;26(11):1859–77.

    Article  CAS  PubMed  Google Scholar 

  54. Cheng K, Wu Q, Zhang ZT, Pielak GJ, Liu ML, Li CG. Crowding and confinement can oppositely affect protein stability. Chemphyschem. 2018;19(24):3350–5.

    Article  CAS  PubMed  Google Scholar 

  55. Smith AE, Zhou LZ, Gorensek AH, Senske M, Pielak GJ. In-cell thermodynamics and a new role for protein surfaces. Proc Natl Acad Sci U S A. 2016;113(7):1725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li C, Wang GF, Wang Y, Creager-Allen R, Lutz EA, Scronce H, et al. Protein 19F NMR in Escherichia coli. J Am Chem Soc. 2010;132(1):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crowley PB, Kyne C, Monteith WB. Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem Commun. 2012;48(86):10681–3.

    Article  CAS  Google Scholar 

  58. Evanics F, Bezsonova I, Marsh J, Kitevski JL, Forman-Kay JD, Prosser RS. Tryptophan solvent exposure in folded and unfolded states of an SH3 domain by 19F and 1H NMR. Biochemistry. 2006;45(47):14120–8.

    Article  CAS  PubMed  Google Scholar 

  59. Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. Biophys J. 1985;47(3):411–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Politi R, Harries D. Enthalpically driven peptide stabilization by protective osmolytes. Chem Commun. 2010;46(35):6449–51.

    Article  CAS  Google Scholar 

  61. Gorensek-Benitez AH, Smith AE, Stadmiller SS, Perez Goncalves GM, Pielak GJ. Cosolutes, crowding, and protein folding kinetics. J Phys Chem B. 2017;121(27):6527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar A, Venkatesu P. Does the stability of proteins in ionic liquids obey the Hofmeister series? Int J Biol Macromol. 2014;63:244–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Ministry of Science and Technology of China grant 2017YFA0505400, Innovation team of Hubei Province grant 2016CFA002, National Natural Sciences Foundation of China grant 21575156, and K.C. Wong Education Foundation and Chinese Academy of Sciences (QYZDJ-SSW-SLH027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conggang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Wu, Q., Jiang, L. et al. Protein stability analysis in ionic liquids by 19F NMR. Anal Bioanal Chem 411, 4929–4935 (2019). https://doi.org/10.1007/s00216-019-01804-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01804-3

Keywords

Navigation