Skip to main content
Log in

High-throughput quantitative analysis of phytohormones in sorghum leaf and root tissue by ultra-performance liquid chromatography-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Plant development, growth, and adaptation to stress are regulated by phytohormones, which can influence physiology even at low concentrations. Phytohormones are chemically grouped according to both structure and function as auxins, cytokinins, abscisic acid, jasmonates, salicylates, gibberellins, and brassinosteroids, among others. This chemical diversity and requirement for highly sensitive detection in complex matrices create unique challenges for comprehensive phytohormone analysis. Here, we present a robust and efficient quantitative UPLC-MS/MS assay for 17 phytohormones, including jasmonates, salicylates, abscisic acid, gibberellins, cytokinins, and auxins. Using this assay, 12 phytohormones were detected and quantified in sorghum plant tissue without the need for solid phase extraction (SPE) or liquid-liquid extraction. Variation of phytohormone profiles was explored in both root and leaf tissues between three genotypes, harvested at two different developmental time points. The results highlight the importance of tissue type, sampling time, and genetic factors when designing experiments that involve phytohormone analysis of sorghum. This research lays the groundwork for future studies, which can combine phytohormone profiling with other datasets such as transcriptome, soil microbiome, genome, and metabolome data, to provide important functional information about adaptation to stress and other environmental variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, pp. 1–15.

  2. Kuppusamy KT, Walcher CL, Nemhauser JL. Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol. 2009;69(4):375.

    Article  CAS  Google Scholar 

  3. Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126(3):467–75.

    Article  CAS  Google Scholar 

  4. Voesenek L, Benschop J, Bou J, Cox M, Groeneveld H, Millenaar F, et al. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot. 2003;91(2):205–11.

    Article  CAS  Google Scholar 

  5. Lacombe B, Achard P. Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol. 2016;34:1–8.

    Article  CAS  Google Scholar 

  6. Liu S, Chen W, Qu L, Gai Y, Jiang X. Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography–electrospray ionization–ion trap mass spectrometry. Anal Bioanal Chem. 2013;405(4):1257–66.

    Article  CAS  Google Scholar 

  7. Cai W-J, Ye T-T, Wang Q, Cai B-D, Feng Y-Q. A rapid approach to investigate spatiotemporal distribution of phytohormones in rice. Plant Meth. 2016;12(1):47. https://doi.org/10.1186/s13007-016-0147-1.

    Article  CAS  Google Scholar 

  8. Amzallag G, Lerner H, Poljakoff-Mayber A. Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot. 1990;41(12):1529–34.

    Article  CAS  Google Scholar 

  9. Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, et al. Energy sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot. 2014;65(13):3479–89.

    Article  Google Scholar 

  10. Erdei L, Taleisnik E. Changes in water relation parameters under osmotic and salt stresses in maize and sorghum. Physiol Plantarum. 1993;89(2):381–7.

    Article  CAS  Google Scholar 

  11. Vardhini BV, Rao SSR. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 2003;41(1):25–31.

    Article  CAS  Google Scholar 

  12. AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J. 2006;48(1):28–44.

    Article  CAS  Google Scholar 

  13. Pan X, Welti R, Wang X. Simultaneous quantification of plant hormones by high-performance liquid-chromatography electrospray tandem mass spectrometry. Phytochemistry. 2008;69:1773–81.

    Article  CAS  Google Scholar 

  14. Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat Protocol. 2010;5(6):986.

    Article  CAS  Google Scholar 

  15. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013;4.

  16. Oksman-Caldentey K-M, Saito K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Biotechnol Opin. 2005;16(2):174–9.

    Article  CAS  Google Scholar 

  17. Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K. Using metabolomic approaches to explore chemical diversity in rice. Mol Plant. 2015;8(1):58–67.

    Article  CAS  Google Scholar 

  18. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11–29.

    Article  CAS  Google Scholar 

  19. Scandiani MM, Luque AG, Razori MV, Ciancio Casalini L, Aoki T, O’donnell K, et al. Metabolic profiles of soybean roots during early stages of Fusarium tucumaniae infection. J Exp Bot. 2014;66(1):391–402.

    Article  Google Scholar 

  20. Sánchez-Martín J, Heald J, Kingston-Smith A, Winters A, Rubiales D, Sanz M, et al. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 2015;38(7):1434–52.

    Article  Google Scholar 

  21. Tsogtbaatar E, Cocuron J-C, Sonera MC, Alonso AP. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis. J Exp Bot. 2015;66(14):4267–77.

    Article  CAS  Google Scholar 

  22. Weston LA. Utilization of allelopathy for weed management in agroecosystems. Agron J. 1996;88(6):860–6.

    Article  Google Scholar 

  23. Rooney WL, Blumenthal J, Bean B, Mullet JE. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin. 2007;1(2):147–57.

    Article  CAS  Google Scholar 

  24. Thakur M, Sharma A. Salt stress and phytohormone (ABA)-induced changes in germination, sugars and enzymes of carbohydrate metabolism in Sorghum bicolor (L.) Moench seeds. J Agric Soc Sci. 2005;1(2):89–93.

    Google Scholar 

  25. Shen C, Bai Y, Wang S, Zhang S, Wu Y, Chen M, et al. Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J. 2010;277(14):2954–69.

    Article  CAS  Google Scholar 

  26. Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, et al. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genom. 2010;10(4):533–46.

    Article  CAS  Google Scholar 

  27. Wobbrock JO, Findlater L, Gergle D, Higgins JJ. The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM; 2011. p. 143–146.

  28. Setter TL. Analysis of constituents for phenotyping drought tolerance in crop improvement. Front Physiol. 2012;3:180. https://doi.org/10.3389/fphys.2012.00180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walton DC. Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol. 1980;31(1):453–89.

    Article  CAS  Google Scholar 

  30. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731–48. https://doi.org/10.1093/jxb/err210.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang JH, Jia WS, Yang JC, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res. 2006;97(1):111–9. https://doi.org/10.1016/j.fcr.2005.08.018.

    Article  Google Scholar 

  32. Rodriguez PL. Abscisic acid catabolism generates phaseic acid, a molecule able to activate a subset of ABA receptors. Mol Plant. 2016;9(11):1448–50.

    Article  CAS  Google Scholar 

  33. Kepka M, Benson CL, Gonugunta VK, Nelson KM, Christmann A, Grill E, et al. Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol. 2011;157(4):2108–19.

  34. Sharkey TD, Raschke K. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol. 1980;65(2):291–7.

    Article  CAS  Google Scholar 

  35. Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, et al. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot. 2006;58(2):211–9.

    Article  Google Scholar 

  36. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27. https://doi.org/10.1146/annurev.phyto.43.040204.135923.

    Article  CAS  PubMed  Google Scholar 

  37. McConn M, Creelman RA, Bell E, Mullet JE. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A. 1997;94(10):5473–7.

    Article  CAS  Google Scholar 

  38. Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88.

    Article  CAS  Google Scholar 

  39. Loake G, Grant M. Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol. 2007;10(5):466–72.

    Article  CAS  Google Scholar 

  40. Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol. 2008;18(9):650–5. https://doi.org/10.1016/j.cub.2008.03.060.

    Article  CAS  PubMed  Google Scholar 

  41. Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Van Ha C, Fujita Y, Tanaka M, et al. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A. 2013;110(12):4840–5. https://doi.org/10.1073/pnas.1302265110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, et al. Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci. 2016;7. https://doi.org/10.3389/fpls.2016.00813.

  43. Weng J-K, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166;(4):881–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephen Kresovich for providing the sorghum seed grown in this field experiment.

Funding

This research was supported by the Office of Science (BER), US Department of Energy (DE-SC0014395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Prenni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 105 kb)

ESM 2

(XLSX 15.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheflin, A.M., Kirkwood, J.S., Wolfe, L.M. et al. High-throughput quantitative analysis of phytohormones in sorghum leaf and root tissue by ultra-performance liquid chromatography-mass spectrometry. Anal Bioanal Chem 411, 4839–4848 (2019). https://doi.org/10.1007/s00216-019-01658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01658-9

Keywords

Navigation