Skip to main content

Advertisement

Log in

Recent advances in optical microscopic methods for single-particle tracking in biological samples

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

With the rapid development of optical microscopic techniques, explorations on the chemical and biological properties of target objects in biological samples at single-molecule/particle level have received great attention recently. In the past decades, various powerful techniques have been developed for single-particle tracking (SPT) in biological samples. In this review, we summarize the commonly used optical microscopic methods for SPT, such as total internal reflection fluorescence microscopy (TIRFM), super-resolution fluorescence microscopy (SRM), dark-field optical microscopy (DFM), total internal reflection scattering microscopy (TIRSM), and differential interference contrast microscopy (DICM). We then discuss the image processing and data analysis methods, including particle localization, trajectory reconstruction, and diffusion behavior analysis. The application of SPT on the cell membrane, within the cell, and the cellular invading process of viruses are introduced. Finally, the challenges and prospects of optical microscopic technologies for SPT are delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst. 2017;143(1):60–80.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Streets AM, Li A, Chen T, Huang Y. Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging. Anal Chem. 2014;86(17):8506–13.

    Article  CAS  PubMed  Google Scholar 

  3. Weaver WM, Tseng P, Kunze A, Masaeli M, Chung AJ, Dudani JS, et al. Advances in high-throughput single-cell microtechnologies. Curr Opin Biotechnol. 2014;25:114–23.

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Yang B, Sekine S, Zhuang S, Zhang D, Yamaguchi YJS. Alignment and counting of mitochondria based on capillary electrophoresis. Sens Actuators B Chem. 2018;265:110–4.

    Article  CAS  Google Scholar 

  5. Woll D, Kolbl C, Stempfle B, Karrenbauer A. A novel method for automatic single molecule tracking of blinking molecules at low intensities. Phys Chem Chem Phys. 2013;15(17):6196–205.

    Article  CAS  PubMed  Google Scholar 

  6. Manzo C, Garciaparajo MF. A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys. 2015;78(12):1–29.

    Article  CAS  Google Scholar 

  7. Dupont A, Lamb DC. Nanoscale three-dimensional single particle tracking. Nanoscale. 2011;3(11):4532–41.

    Article  CAS  PubMed  Google Scholar 

  8. Wedeking T, Löchte S, Richter CP, Bhagawati M, Piehler J, You CJ. Single cell GFP-trap reveals stoichiometry and dynamics of cytosolic protein complexes. Nano Lett. 2015;15(5):3610–5.

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Hu R, Mabry JN, Miao B, Wu DT, Koynov K, et al. Scaling of polymer dynamics at an oil-water interface in regimes dominated by viscous drag and desorption-mediated flights. J Am Chem Soc. 2015;137(38):12312–20.

    Article  CAS  PubMed  Google Scholar 

  10. Michalet X, Weiss S, JaGer M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev. 2010;37(31):1785–813.

    Google Scholar 

  11. Moerner WE, Fromm DP. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum. 2003;74(8):3597–619.

    Article  CAS  Google Scholar 

  12. Orrit M, Ha T, Sandoghdar V. Single-molecule optical spectroscopy. Chem Soc Rev. 2014;43(4):973–6.

    Article  CAS  PubMed  Google Scholar 

  13. Tan HX, Luo WJ, Wei L, Chen B, Li WX, Xiao LH, et al. Quantifying the distribution of the stoichiometric composition of anticancer peptide Lycosin-I on the lipid membrane with single molecule spectroscopy. J Phys Chem B. 2016;120(12):3081–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wei L, Liu C, Chen B, Zhou P, Li HC, Xiao LH, et al. Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution. Anal Chem. 2013;85(7):3789–93.

    Article  CAS  PubMed  Google Scholar 

  15. Huang B, Bates M, Zhuang XW. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78(1):993–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych SG, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–5.

    Article  PubMed  Google Scholar 

  17. Mabry JN, Skaug MJ, Schwartz DK. Single-molecule insights into retention at a reversed-phase chromatographic interface. Anal Chem. 2014;86(19):9451–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ruthardt N, Lamb DC, Bräuchle C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther. 2011;19(7):1199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yildiz A, Forkey JN, Mckinney SA, Ha T, Goldman YE, Selvin PR. Myosin v walks hand-over-hand: single flurophore imaging with 1.5-nm localization. Science. 2003;300(5628):2061–5.

    Article  CAS  PubMed  Google Scholar 

  20. Toomre D, Bewersdorf J. A new wave of cellular imaging. Annu Rev Cell Dev Biol. 2010;26(1):285–314.

    Article  CAS  PubMed  Google Scholar 

  21. Beaumont V. Visualizing membrane trafficking using total internal reflection fluorescence microscopy. Biochem Soc Trans. 2003;31(4):819–23.

    Article  CAS  PubMed  Google Scholar 

  22. Sigal YM, Zhou RB, Zhuang XW. Visualizing and discovering cellular structures with super-resolution microscopy. Science. 2018;361(6405):880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ye ZJ, Wei L, Zeng XY, Weng R, Shi XB, Wang ND, et al. Background-free imaging of a viral capsid proteins coated anisotropic nanoparticle on a living cell membrane with dark-field optical microscopy. Anal Chem. 2018;90(2):1177–85.

    Article  CAS  PubMed  Google Scholar 

  24. Sun W, Wang GF, Fang N, Yeung ES. Wavelength-dependent differential interference contrast microscopy: selectively imaging nanoparticle probes in live cells. Anal Chem. 2009;81(22):9203–8.

    Article  CAS  PubMed  Google Scholar 

  25. Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors. Biosens Bioelectron. 2005;20(12):2470–87.

    Article  CAS  PubMed  Google Scholar 

  26. Kitano H, Murakami M, Kawata Y, Egami C, Sugihara O, Okamoto N, et al. Non-optically probing near-field microscopy with illumination of total internal reflection. J Microsc. 2001;202(1):162–71.

    Article  CAS  PubMed  Google Scholar 

  27. Sönnichsen C, Geier S, Hecker NE, Plessen Gv, Feldmann J, Ditlbacher H, et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett. 2000;77(19):2949–51.

  28. Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, et al. Single cell optical imaging and spectroscopy. Chem Rev. 2013;113(4):2469–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mattheyses AL, Simon SM, Rappoport JZ. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci. 2010;123(21):3621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Selzer Y, Cai L, Cabassi MA, Yao Y, Tour JM, Mayer TS, et al. Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett. 2005;5(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MGL. Super-resolution video microscopy of live cells by structured illumination. Nat Methods. 2009;6(5):339–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hein B, Willig KI, Hell SW. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci U S A. 2008;105(38):14271–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rust MJ, Bates M, Zhuang XW. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat Methods. 2006;3(10):793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bates M, Huang B, Dempsey GT, Zhuang XW. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science. 2007;317(5845):1749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flors C, Hotta J, Ujii H, Dedecker P, Ando R, Mizuno H, et al. A stroboscopic approach for fast photoactivation-localization microscopy with dronpa mutants. J Am Chem Soc. 2007;129(45):13970–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gould TJ, Verkhusha VV, Hess ST. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc. 2009;4(3):291–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiao LH, Wei L, Cheng XD, He Y, Yeung ES. Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells. Anal Chem. 2011;83(19):7340–7.

    Article  CAS  PubMed  Google Scholar 

  38. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006;440(7086):935–9.

    Article  CAS  PubMed  Google Scholar 

  39. Willig KI, Stiel AC, Brakemann T, Jakobs S, Hell SW. Dual-label sted nanoscopy of living cells using photochromism. Nano Lett. 2011;11(3):3970–3.

    Article  CAS  PubMed  Google Scholar 

  40. Sun W, Gu Y, Wang GF, Fang N. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos. Anal Chem. 2012;84(2):1134–8.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao LH, Zhou R, He Y, Li YJ, Yeung ES. Direct observation of nanoparticle self-assembly dynamics at the water−air interface using differential interference contrast microscopy. J Phys Chem C. 2009;113(4):1209–16.

    Article  CAS  Google Scholar 

  42. Qi F, Han YM, Ye ZJ, Liu H, Wei L, Xiao LH. Color-coded single-particle pyrophosphate assay with dark-field optical microscopy. Anal Chem. 2018;90(18):11146–53.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao LH, Yeung ES. Optical imaging of individual plasmonic nanoparticles in biological samples. Annu Rev Anal Chem. 2014;7(1):89–111.

    Article  CAS  Google Scholar 

  44. Yang YH, Nam JM. Single nanoparticle tracking-based detection of membrane receptor−ligand interactions. Anal Chem. 2009;81(7):2564–8.

    Article  CAS  PubMed  Google Scholar 

  45. Xiao LH, Qiao YX, He Y, Yeung ES. Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem. 2010;82(12):5268–74.

    Article  CAS  PubMed  Google Scholar 

  46. Huang T, Xu XN. Multicolored nanometre-resolution mapping of single protein–ligand binding complexes using far-field photostable optical nanoscopy (PHOTON). Nanoscale. 2011;3(9):3567–72.

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Jing C, Zhang L, Long YT. Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem Soc Rev. 2012;41(2):632–42.

    Article  CAS  PubMed  Google Scholar 

  48. Xiao LH, Qiao YX, He Y, Yeung ES. Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy. J Am Chem Soc. 2011;133(27):10638–45.

    Article  CAS  PubMed  Google Scholar 

  49. Wei L, Xu JH, Ye ZJ, Zhu XP, Zhong M, Luo WJ, et al. Orientational imaging of a single gold nanorod at the liquid/solid interface with polarized evanescent field illumination. Anal Chem. 2016;88(4):1995–9.

    Article  CAS  PubMed  Google Scholar 

  50. Poon CY, Wei L, Xu YL, Chen B, Xiao LH, Li HW. Quantification of cancer biomarkers in serum using scattering-based quantitative single particle intensity measurement with a dark-field microscope. Anal Chem. 2016;88(17):8849–56.

    Article  CAS  PubMed  Google Scholar 

  51. Ye ZJ, Liu H, Wang FY, Wang X, Wei L, Xiao L. Single-particle tracking discloses binding-mediated rocking diffusion of rod-shaped biological particles on lipid membranes. Chem Sci. 2019;10(5):1351–9.

  52. Ye ZJ, Wei L, Zeng X, Weng R, Shi X, Wang N, et al. Background-free imaging of a viral capsid proteins coated anisotropic nanoparticle on a living cell membrane with dark-field optical microscopy. Anal Chem. 2017;90(2):1177–85.

  53. Wei L, Ma YH, Zhu XP, Xu JH, Wang YX, Duan HG, et al. Sub-diffraction-limit localization imaging of a plasmonic nanoparticle pair with wavelength-resolved dark-field microscopy. Nanoscale. 2017;9(25):8747–55.

  54. Marchuk K, Fang N. Three-dimensional orientation determination of stationary anisotropic nanoparticles with sub-degree precision under total internal reflection scattering microscopy. Nano Lett. 2013;13(11):5414–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gu Y, Sun W, Wang GF, Fang N. Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. J Am Chem Soc. 2011;133(15):5720–3.

    Article  CAS  PubMed  Google Scholar 

  56. Gu Y, Wang GF, Fang N. Simultaneous single-particle superlocalization and rotational tracking. ACS Nano. 2013;7(2):1658–65.

    Article  CAS  PubMed  Google Scholar 

  57. Holzwarth GM, Hill DB, Mclaughlin EB. Polarization-modulated differential-interference contrast microscopy with a variable retarder. Appl Opt. 2000;39(34):6288–94.

    Article  CAS  PubMed  Google Scholar 

  58. Shribak I. Orientation-independent differential interference contrast microscopy. Appl Opt. 2006;45(3):460–9.

    Article  PubMed  Google Scholar 

  59. Willets KA, Wilson AJ, Sundaresan V, Joshi PB. Super-resolution imaging and plasmonics. Chem Rev. 2017;117(11):7538–82.

    Article  CAS  PubMed  Google Scholar 

  60. Wang GF, Sun W, Luo Y, Fang N. Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy. J Am Chem Soc. 2010;132(46):16417–22.

    Article  CAS  PubMed  Google Scholar 

  61. Xiao LH, Ha JW, Wei L, Wang GF, Fang N. Determining the full three-dimensional orientation of single anisotropic nanoparticles by differential interference contrast microscopy. Angew Chem Int Ed. 2012;51(31):7734–8.

    Article  CAS  Google Scholar 

  62. Monnier N, Barry Z, Park HY, Su KC, Katz Z, English BP, et al. Inferring transient particle transport dynamics in live cells. Nat Methods. 2015;12(9):838–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat Methods. 2014;11(3):267–79.

    Article  CAS  PubMed  Google Scholar 

  64. Deschout H, Cella ZF, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods. 2014;11(3):253–66.

    Article  CAS  PubMed  Google Scholar 

  65. Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biology. 2002;82(5):2775–83.

    CAS  Google Scholar 

  66. Abraham AV, Ram S, Chao J, Ward ES, Ober RJ. Quantitative study of single molecule location estimation techniques. Opt Express. 2009;17(26):23352–73.

    Article  CAS  PubMed  Google Scholar 

  67. Deschout H, Neyts K, Braeckmans K. The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J Biophotonics. 2011;5(1):97–109.

    Article  CAS  PubMed  Google Scholar 

  68. Wong Y, Lin ZP, Ober RJ. Limit of the accuracy of parameter estimation for moving single molecules imaged by fluorescence microscopy. IEEE T Signal Proces. 2011;59(3):895–911.

    Article  Google Scholar 

  69. Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J. 2001;81(4):2378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR. Kinesin and dynein move a peroxisome in vivo: a Tug-of-War or coordinated movement? Science. 2005;308(5727):1469–72.

    Article  CAS  PubMed  Google Scholar 

  71. Huang B, Wang WQ, Bates M, Zhuang XW. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319(5864):810–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qu XH, Wu D, Mets L, Scherer NF. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci U S A. 2004;101(31):11298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Serge A, Bertaux N, Rigneault H, Marguet D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods. 2008;5(8):687–94.

    Article  CAS  PubMed  Google Scholar 

  74. Shafique K, Shah M. A noniterative greedy algorithm for multiframe point correspondence. IEEE T Pattern Anal. 2005;27(1):51–65.

    Article  Google Scholar 

  75. Long JA, Nelson TA. A review of quantitative methods for movement data. Int J Geogr Inf Sci. 2013;27(2):292–318.

    Article  Google Scholar 

  76. Liang L, Shen H, De CP, Duncan JS. Tracking clathrin coated pits with a multiple hypothesis based method. Med Image Comput Comput Assist Interv. 2010;13(2):315–22.

    PubMed  PubMed Central  Google Scholar 

  77. Coraluppi S, Carthel C. Multiple-hypothesis tracking for targets producing multiple measurements. IEEET Aero Electronic Sys. 2018;54:1485–98.

    Article  Google Scholar 

  78. Sibarita J. High-density single-particle tracking: quantifying molecule organization and dynamics at the nanoscale. Histochem Cell Biol. 2014;141(6):587–95.

    Article  CAS  PubMed  Google Scholar 

  79. Liu SL, Wang ZG, Zhang ZL, Pang DW. Tracking single viruses infecting their host cells using quantum dots. Chem Soc Rev. 2016;45(5):1211–24.

    Article  CAS  PubMed  Google Scholar 

  80. Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salomé L. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biology. 2003;84(1):356–66.

    CAS  Google Scholar 

  81. Levi V, Gratton E. Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys. 2007;48(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  82. Kusumi A, Suzuki K, Kasai RS, Ritchie K, Fujiwara TK. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci. 2011;36(11):604–15.

    Article  CAS  PubMed  Google Scholar 

  83. Laude AJ, Prior IA. Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol. 2004;21(3):193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Suzuki K, Fujiwara TK, Sanematsu F, Iino R, Edidin M, Kusumi A. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol. 2007;177(4):717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujiwara TK, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol. 2002;157(6):1071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lange S, Katayama Y, Schmid M, Burkacky O, Brauchle C, Lamb D, et al. Simultaneous transport of different localized mRNA species revealed by live-cell imaging. Traffic. 2010;9(8):1256–67.

    Article  CAS  Google Scholar 

  87. Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010;11(10):688–99.

    Article  CAS  PubMed  Google Scholar 

  88. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50.

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki KGN, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y, et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol. 2012;8:774–83.

    Article  CAS  PubMed  Google Scholar 

  90. Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, et al. Actin restricts FcεRI diffusion and facilitates antigen-induced receptor immobilisation. Nat Cell Biol. 2008;10(8):955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weigel AV, Tamkun MM, Krapf D. Quantifying the dynamic interactions between a clathrin-coated pit and cargo molecules. Proc Natl Acad Sci U S A. 2013;110(48):4591–600.

    Article  CAS  Google Scholar 

  92. Ge J, Dong ZZ, Bai DM, Zhang L, Hu YL, Ji DY, et al. A novel label-free fluorescent molecular beacon for the detection of 3′-5′ exonuclease enzymatic activity using DNA-templated copper nanoclusters. New J Chem. 2017;41(18):9718–23.

    Article  CAS  Google Scholar 

  93. Liang L, Li J, Li Q, Huang Q, Shi J, Yan H, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int Ed. 2014;53(30):7745–50.

    Article  CAS  Google Scholar 

  94. Wei L, Ye ZJ, Xu YL, Chen B, Yeung ES, Xiao LH. Single particle tracking of peptides-modified nanocargo on lipid membrane revealing bulk-mediated diffusion. Anal Chem. 2016;88(24):11973–7.

    Article  CAS  PubMed  Google Scholar 

  95. Xiao LH, Wei L, Liu C, He Y, Yeung ES. Unsynchronized translational and rotational diffusion of nanocargo on a living cell membrane. Angew Chem Int Ed. 2012;51(17):4181–4.

    Article  CAS  Google Scholar 

  96. Chen K, Gu Y, Sun W, Dong B, Wang G, Fan X, et al. Characteristic rotational behaviors of rod-shaped cargo revealed by automated five-dimensional single particle tracking. Nat Commun. 2017;8(1):656–66.

    Article  CAS  Google Scholar 

  97. Nan X, Sims PA, Xie XS. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem. 2008;9(5):707–12.

  98. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–15.

    Article  CAS  PubMed  Google Scholar 

  99. Chen J, Li Z, Ge J, Yang R, Zhang L, Qu LB, et al. An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles. Talanta. 2015;139:226–32.

    Article  CAS  PubMed  Google Scholar 

  100. Liu JZ, Wang JY, Li ZH, Meng HM, Zhang L, Wang HQ, et al. A lateral flow assay for the determination of human tetanus antibody in whole blood by using gold nanoparticle labeled tetanus antigen. Mikrochim Acta. 2018;185(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  101. Rajan SS, Liu HY, Vu TQ. Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. ACS Nano. 2008;2(6):1153–66.

    Article  CAS  PubMed  Google Scholar 

  102. Bhatia D, Arumugam S, Nasilowski M, Joshi H, Wunder C, Chambon V, et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat Nanotechnol. 2016;11(12):1112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed. 2011;50(27):6093–7.

    Article  CAS  Google Scholar 

  104. Fakhri N, Wessel AD, Willms C, Pasquali M, Klopfenstein DR, Mackintosh FC, et al. Highresolution mapping of intracellular fluctuations using carbon nanotubes. Science. 2014;344(6187):1031–5.

    Article  CAS  PubMed  Google Scholar 

  105. Nelson SR, Ali MY, Trybus KM, Warshaw DM. Random walk of processive, quantum dot-labeled myosin va molecules within the actin cortex of cos-7 cells. Biology. 2009;97(2):509–18.

    CAS  Google Scholar 

  106. Pierobon P, Achouri S, Courty S, Dunn AR, Spudich JA, Dahan M, et al. Velocity, processivity, and individual steps of single myosin V molecules in live cells. Biology. 2009;96(10):4268–75.

    CAS  Google Scholar 

  107. Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 2006;6(7):1491–5.

    Article  CAS  PubMed  Google Scholar 

  108. Balint S, Vilanova IV, Alvarez AS, Lakadamyali M. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc Natl Acad Sci U S A. 2013;110(9):3375–80.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128(4):787–800.

    Article  CAS  PubMed  Google Scholar 

  110. Handwerger KE, Gall JG. Subnuclear organelles: new insights into form and function. Trends Cell Biol. 2006;16(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  111. Lakadamyali M, Rust MJ, Babcock HP, Zhuang XW. Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A. 2003;100(16):9280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Levi V, Ruan QQ, Plutz MJ, Belmont AS, Gratton E. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biology. 2005;89(6):4275–85.

    CAS  Google Scholar 

  113. Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt J. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature. 2010;467(7315):600–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Greber UF, Way M. A superhighway to virus infection. Cell. 2006;124(4):741–54.

    Article  CAS  PubMed  Google Scholar 

  115. Liu HB, Liu Y, Liu Y, Liu SL, Pang DW, Xiao GF. Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. J Virol. 2011;85(13):6252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Skeik N, Jabr F. Influenza viruses and the evolution of avian influenza virus H5N1. Int J Infect Dis. 2008;12(3):233–8.

    Article  CAS  PubMed  Google Scholar 

  117. Rust MJ, Lakadamyali M, Feng Z, Zhuang XW. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 2004;11(6):567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu SL, Zhang LJ, Wang ZG, Zhang ZL, Wu QM, Sun EZ, et al. Globally visualizing the microtubule-dependent transport behaviors of influenza virus in live cells. Anal Chem. 2014;86(8):3902–8.

  119. Liu SL, Zhang ZL, Tian ZQ, Zhao HS, Liu H, Sun EZ, et al. Effectively and efficiently dissecting the infection of influenza virus by quantum-dot-based single-particle tracking. ACS Nano. 2012;6(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  120. Campbell EM, Hope TJ. Live cell imaging of the HIV-1 life cycle. Trends Microbiol. 2008;16(12):580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mcdonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol. 2002;159(3):441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell. 2009;137(3):433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li Q, Li W, Yin W, Guo J, Zhang ZP, Zeng D, et al. Single-particle tracking of human immunodeficiency virus type 1 productive entry into human primary macrophages. ACS Nano. 2017;11(4):3890–903.

    Article  CAS  PubMed  Google Scholar 

  124. Lee SF, Osborne MA. Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? ChemPhysChem. 2010;10(13):2174–91.

    Article  CAS  Google Scholar 

  125. Wei L, Zhou P, Yang QX, Yang QY, Ma M, Chen B, et al. Fabrication of bright and small size semiconducting polymer nanoparticles for cellular labelling and single particle tracking. Nanoscale. 2014;6(19):11351–8.

    Article  CAS  PubMed  Google Scholar 

  126. Luo WJ, Wu M, Li S, Xu YL, Ye ZJ, Wei L, et al. Nanoprecipitation of fluorescent conjugated polymer onto the surface of plasmonic nanoparticle for fluorescence/dark-field dual-modality single particle imaging. Anal Chem. 2016;88(13):6827–35.

    Article  CAS  PubMed  Google Scholar 

  127. Wei L, Zhang D, Zheng XF, Zeng XY, Zeng YL, Shi XB, et al. Fabrication of positively charged fluorescent polymer nanoparticles for cell imaging and gene delivery. Nanotheranostics. 2018;2(2):157–67.

  128. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, et al. A rapid fluorescence "switch-on" assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens Bioelectron. 2015;72:31–6.

    Article  CAS  PubMed  Google Scholar 

  129. Yang J, Huang ZM, Hu YL, Ge J, Li JJ, Li ZH. A facile fluorescence assay for rapid and sensitive detection of uric acid based on carbon dots and MnO2 nanosheets. New J Chem. 2018;42(18):15121–6.

    Article  CAS  Google Scholar 

  130. Song Y, Yan X, Li ZH, Qu LB, Zhu CZ, Ye RF, et al. Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. J Mater Chem B. 2018;6(19):3181–7.

    Article  CAS  PubMed  Google Scholar 

  131. Liu HF, Li ZH, Sun YQ, Geng X, Hu YL, Meng HM, et al. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci Rep. 2018;8(1):1086–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hu YL, Zhang L, Geng X, Ge J, Liu HF, Li ZH. A rapid and sensitive turn-on fluorescent probe for ascorbic acid detection based on carbon dots–MnO2 nanocomposites. Anal Methods. 2017;9(38):5653–8.

    Article  CAS  Google Scholar 

  133. Hu YL, Geng X, Zhang L, Huang ZM, Ge J, Li ZH. Nitrogen-doped carbon dots mediated fluorescent on-off assay for rapid and highly sensitive pyrophosphate and alkaline phosphatase detection. Sci Rep. 2017;7(1):5849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Song W, Duan WX, Liu YH, Ye ZJ, Chen YL, Chen HL, et al. Ratiometric detection of intracellular lysine and ph with one-pot synthesized dual emissive carbon dots. Anal Chem. 2017;89(24):13626–33.

    Article  CAS  PubMed  Google Scholar 

  135. Zhao S, Chen C, Li ZH, Yuan ZQ, Lu C. Hydroxyl radical induced chemiluminescence of hyperbranched polyethyleneimine protected silver nanoclusters and its application in tea polyphenols detection. Anal Methods. 2017;9(21):3114–20.

    Article  CAS  Google Scholar 

  136. Chen LC, Wang CW, Yuan ZQ, Chang HS. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–29.

    Article  CAS  PubMed  Google Scholar 

  137. Chen C, Yuan ZQ, Chang HS, Lu FN, Li ZH, Lu C. Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Anal Methods. 2016;8(12):2628–33.

    Article  CAS  Google Scholar 

  138. Zhang D, Wei L, Zhong ML, Xiao LH, Li HW, Wang JF. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem Sci. 2018;9(23):5260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu J, Zhang X, Hao X, Zhang X, Zhou M, Lee CS, et al. Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials. 2014;35(10):3356–64.

    Article  CAS  PubMed  Google Scholar 

  140. Ni M, Zhuo SM, So PTC, Yu H. Fluorescent probes for nanoscopy: four categories and multiple possibilities. J Biophotonics. 2017;10(1):11–23.

    Article  PubMed  Google Scholar 

  141. Dickson RM, Cubitt AB, Tsien RY, Moerner WE. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997;388(6640):355–8.

    Article  CAS  PubMed  Google Scholar 

  142. Tinnefeld P, Dirkpeter Herten A, Sauer M. Photophysical dynamics of single molecules studied by spectrally-resolved fluorescence lifetime imaging microscopy (SFLIM). J Phys Chem A. 2001;105(34):7989–8003.

    Article  CAS  Google Scholar 

  143. Fitzgibbon J, Bell K, King E, Oparka K. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol. 2010;153(4):1453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wei F, Lu D, Shen H, Wan W, Ponsetto JL, Huang E, et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 2014;14(8):4634–9.

    Article  CAS  PubMed  Google Scholar 

  145. Wei L, Zhao X, Chen B, Li H, Xiao LH, Yeung ES. Frozen translational and rotational motion of human immunodeficiency virus transacting activator of transcription peptide-modified nanocargo on neutral lipid bilayer. Anal Chem. 2013;85(10):5169–75.

    Article  CAS  PubMed  Google Scholar 

  146. Wu Y, Ali MRK, Dong B, Han TG, Chen KC, Chen J, et al. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano. 2018;12(9):9279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang D, He C, Stoykovich MP, Schwartz DK. Nanoscale topography influences polymer surface diffusion. ACS Nano. 2015;9(2):1656–64.

    Article  CAS  PubMed  Google Scholar 

  148. Skaug MJ, Mabry JN, Schwartz DK. Intermittent molecular hopping at the solid-liquid interface. Phys Rev Lett. 2013;110(25):1–5.

    Article  CAS  Google Scholar 

  149. Wöll D, Uji-i H, Schnitzler T, Hotta J-i, Dedecker P, Herrmann A, et al. Radical polymerization tracked by single molecule spectroscopy. Angew Chem Int Ed. 2008;47(4):783–7.

  150. Yang J, Park H, Kaufman LJ. In situ optical imaging of the growth of conjugated polymer aggregates. Angew Chem Int Ed. 2018;57(7):1826–30.

    Article  CAS  Google Scholar 

  151. Yu C, Guan J, Chen K, Bae SC, Granick S. Single-molecule observation of long jumps in polymer adsorption. ACS Nano. 2013;7(11):9735–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by national natural science foundation of China (NSFC, Project no. 21522502), the Fundamental Research Funds for the Central Universities, the Excellent Youth Scholars of Hunan Provincial Education Department (17B155) and the Opening Fund of Key Laboratory of Chemical Biology and Tradition Chinese Medicine Research (Ministry of Education of China), Hunan Normal University.

Funding

This study was funded by National Natural Science Foundation of China (NSFC, Project no. 21522502), the Fundamental Research Funds for the Central Universities, the Excellent Youth Scholars of Hunan Provincial Education Department (17B155), and the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all the authors. All the authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Lehui Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wang, X., Liu, H. et al. Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal Bioanal Chem 411, 4445–4463 (2019). https://doi.org/10.1007/s00216-019-01638-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01638-z

Keywords

Navigation