Skip to main content

Advertisement

Log in

Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cancer diagnostic tools enabling screening, diagnosis, and effective disease management are essential elements to increase the survival rate of diagnosed patients. Low abundance of cancer markers present in large amounts of interferences remains the major issue. Moreover, current diagnostic technologies are restricted to high-resourced settings only. Integrating nanofibers into miniaturized analytical systems holds a significant promise to address these challenges as demonstrated by recent publications. A large surface area, three-dimensional porous network, and diverse range of functional chemistries make nanofibers an excellent candidate as immobilization support and/or transduction elements, enabling high capture yield and ultrasensitive detection in miniaturized devices. Functional nanofibers have thus been used to isolate and detect various cancer-related biomarkers with a high degree of success in both on-chip and off-chip platforms. In fact, the chemical and functional adaptability of nanofibers has been exploited to address the technical challenges unique to each of the cancer markers in body fluids, where circulating tumor cells are prominently investigated among others (proteins, nucleic acids, and exosomes). So far, none of the work has exploited the nanofibers for cancer-derived exosomes, opening an avenue for further research effort. The trend and future prospects signal possibilities to strengthen the implementation of nanofiber-miniaturized system hybrid for a next generation of cancer diagnostic platforms both in clinical and point-of-care testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization (2018) Cancer. http://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 9 Nov 2018.

  2. Rana A, Zhang Y, Esfandiari L. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers. Analyst. 2018;143:2971–91. https://doi.org/10.1039/C7AN01965C.

    Article  CAS  PubMed  Google Scholar 

  3. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31:172–9. https://doi.org/10.1016/j.ccell.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  4. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531.

    Article  CAS  PubMed  Google Scholar 

  5. Lin M, Chen JF, Lu YT, Zhang Y, Song J, Hou S, et al. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res. 2014;47:2014–6. https://doi.org/10.1021/ar5001617.

    Article  CAS  Google Scholar 

  6. Choi J-H, Lee J, Oh B-K. Nanomaterial-based in vitro analytical system for diagnosis and therapy in microfluidic device. BioChip J. 2016;10:331–45. https://doi.org/10.1007/s13206-016-0409-z.

    Article  CAS  Google Scholar 

  7. Giannitelli SM, Costantini M, Basoli F, Trombetta M, Rainer A (2018) 8 - Electrospinning and microfluidics: an integrated approach for tissue engineering and cancer. In: Guarino V, Ambrosio LBT-ET (EFDTs) for B and MD (eds) Woodhead Publishing Series in Biomaterials. Woodhead Publishing, pp 139–155.

  8. Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4:922–32. https://doi.org/10.1039/C6BM00070C.

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Boda SK, Batra SK, Li X, Xie J. Emerging roles of electrospun nanofibers in cancer research. Adv Healthc Mater. 2017;7:1701024. https://doi.org/10.1002/adhm.201701024.

    Article  CAS  Google Scholar 

  10. Matlock-Colangelo L, Colangelo NW, Fenzl C, Frey M, Baeumner AJ. Passive mixing capabilities of micro-and nanofibres when used in microfluidic systems. Sensors (Switzerland). 2016;16:1–18. https://doi.org/10.3390/s16081238.

    Article  CAS  Google Scholar 

  11. Hersey JS, Meller A, Grinstaff MW. Functionalized nanofiber meshes enhance immunosorbent assays. Anal Chem. 2015;87:11863–70. https://doi.org/10.1021/acs.analchem.5b03386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater. 2016;1:56–64. https://doi.org/10.1016/j.bioactmat.2016.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xiao Y, Shen M, Shi X. Design of functional electrospun nanofibers for cancer cell capture applications. J Mater Chem B. 2018;6:1420–32. https://doi.org/10.1039/C7TB03347H.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang N, Deng Y, Tai Q, Cheng B, Zhao L, Shen Q, et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv Mater. 2012;24:2756–60. https://doi.org/10.1002/adma.201200155.

    Article  CAS  PubMed  Google Scholar 

  15. Hou S, Zhao L, Shen Q, Yu J, Ng C, Kong X, et al. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chemie Int Ed. 2013;52:3379–83. https://doi.org/10.1002/anie.201208452.

    Article  CAS  Google Scholar 

  16. Wang S, Liu K, Liu J, Yu ZTF, Xu X, Zhao L, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chemie - Int Ed. 2011;50:3084–8. https://doi.org/10.1002/anie.201005853.

    Article  CAS  Google Scholar 

  17. Wang Z, Sun N, Liu M, Cao Y, Wang K, Wang J, et al. Multifunctional nanofibers for specific purification and release of CTCs. ACS Sensors. 2017;2:547–52. https://doi.org/10.1021/acssensors.7b00048.

    Article  CAS  PubMed  Google Scholar 

  18. Wang M, Xiao Y, Lin L, Zhu X, Du L, Shi X. A microfluidic chip integrated with hyaluronic acid-functionalized electrospun chitosan nanofibers for specific capture and nondestructive release of CD44-overexpressing circulating tumor cells. Bioconjug Chem. 2018;29:1081–90. https://doi.org/10.1021/acs.bioconjchem.7b00747.

    Article  CAS  PubMed  Google Scholar 

  19. Xiao Y, Wang M, Lin L, Du L, Shen M, Shi X. Integration of aligned polymer nanofibers within a microfluidic chip for efficient capture and rapid release of circulating tumor cells. Mater Chem Front. 2018;2:891–900. https://doi.org/10.1039/C7QM00570A.

    Article  CAS  Google Scholar 

  20. Yu C-C, Ho B-C, Juang R-S, Hsiao Y-S, Naidu RVR, Kuo C-W, et al. Poly(3,4-ethylenedioxythiophene)-based nanofiber mats as an organic bioelectronic platform for programming multiple capture/release cycles of circulating tumor cells. ACS Appl Mater Interfaces. 2017;9:30329–42. https://doi.org/10.1021/acsami.7b07042.

    Article  CAS  PubMed  Google Scholar 

  21. Jeon S, Hong W, Lee E, Cho Y. High-purity isolation and recovery of circulating tumor cells using conducting polymer-deposited microfluidic device. Theranostics. 2014;4:1123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, et al. Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci. 2017;5:752–61. https://doi.org/10.1039/C6BM00933F.

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Li K, Zhang X, Liu C, Guo B, Wen W, et al. Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip. 2018;18:486–95. https://doi.org/10.1039/C7LC01224A.

    Article  CAS  PubMed  Google Scholar 

  24. Ding E, Hai J, Li T, Wu J, Chen F, Wen Y, et al. Efficient hydrogen-generation CuO/Co3O4 heterojunction nanofibers for sensitive detection of cancer cells by portable pressure meter. Anal Chem. 2017;89:8140–7. https://doi.org/10.1021/acs.analchem.7b01951.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Hai J, Li T, Ding E, He J, Wang B. Pressure and fluorescence dual signal readout CuO-NiO/C heterojunction nanofibers-based nanoplatform for imaging and detection of target cancer cells in blood. ACS Sustain Chem Eng. 2018;6:9921–9. https://doi.org/10.1021/acssuschemeng.8b01166.

    Article  CAS  Google Scholar 

  26. Zhao L, Lu YT, Li F, Wu K, Hou S, Yu J, et al. High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv Mater. 2013;25:2897–902. https://doi.org/10.1002/adma.201205237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pham QP, Sharma U, Mikos AG. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7:2796–805. https://doi.org/10.1021/bm060680j.

    Article  CAS  PubMed  Google Scholar 

  28. Viraka Nellore BP, Kanchanapally R, Pramanik A, Sinha SS, Chavva SR, Hamme A, et al. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells. Bioconjug Chem. 2015;26:235–42. https://doi.org/10.1021/bc500503e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan S, Chen P, Zeng X, Zhang X, Li Y, Xia Y, et al. Integrated multifunctional electrochemistry microchip for highly efficient capture, release, lysis, and analysis of circulating tumor cells. Anal Chem. 2017;89:12039–44. https://doi.org/10.1021/acs.analchem.7b02469.

    Article  CAS  PubMed  Google Scholar 

  30. Jeon S, Moon J-M, Lee ES, Kim YH, Cho Y. An electroactive biotin-doped polypyrrole substrate that immobilizes and releases EpCAM-positive cancer cells. Angew Chemie Int Ed. 2014;53:4597–602. https://doi.org/10.1002/anie.201309998.

    Article  CAS  Google Scholar 

  31. Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010;4:1–10. https://doi.org/10.2147/NSA.S13465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schubert SM, Arendt LM, Zhou W, Baig S, Walter SR, Buchsbaum RJ, et al. Ultra-sensitive protein detection via single molecule arrays towards early stage cancer monitoring. Sci Rep. 2015;5:11034.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ali MA, Mondal K, Singh C, Dhar Malhotra B, Sharma A. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale. 2015;7:7234–45. https://doi.org/10.1039/C5NR00194C.

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Liu D, Xu L, Xing R, Liu W, Sheng K, et al. Wire-in-tube IrOx architectures: alternative label-free immunosensor for amperometric immunoassay toward α-fetoprotein. ACS Appl Mater Interfaces. 2015;7:22719–26. https://doi.org/10.1021/acsami.5b07895.

    Article  CAS  PubMed  Google Scholar 

  35. Ali MA, Mondal K, Jiao Y, Oren S, Xu Z, Sharma A, et al. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces. 2016;8:20570–82. https://doi.org/10.1021/acsami.6b05648.

    Article  CAS  PubMed  Google Scholar 

  36. Soares JC, Iwaki LEO, Soares AC, Rodrigues VC, Melendez ME, Fregnani JHTG, et al. Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles. ACS Omega. 2017;2:6975–83. https://doi.org/10.1021/acsomega.7b01029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, et al. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale. 2017;9:17020–8. https://doi.org/10.1039/C7NR04817C.

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Li S, Yang CF. Electrochemical biosensors for cancer biomarker detection. Electroanalysis. 2012;24:2213–29. https://doi.org/10.1002/elan.201200447.

    Article  CAS  Google Scholar 

  39. Qiu X, Hildebrandt N. Rapid and multiplexed microRNA diagnostic assay using quantum dot-based Förster resonance energy transfer. ACS Nano. 2015;9:8449–57. https://doi.org/10.1021/acsnano.5b03364.

    Article  CAS  PubMed  Google Scholar 

  40. Dudani JS, Warren AD, Bhatia SN. Harnessing protease activity to improve cancer care. Annu Rev Cancer Biol. 2018;2:353–76. https://doi.org/10.1146/annurev-cancerbio-030617-050549.

    Article  Google Scholar 

  41. Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev. 2015;44:2963–97. https://doi.org/10.1039/C4CS00370E.

    Article  CAS  PubMed  Google Scholar 

  42. Han SW, Koh W-G. Hydrogel-framed nanofiber matrix integrated with a microfluidic device for fluorescence detection of matrix metalloproteinases-9. Anal Chem. 2016;88:6247–53. https://doi.org/10.1021/acs.analchem.5b04867.

    Article  CAS  PubMed  Google Scholar 

  43. Swisher LZ, Prior AM, Shishido S, Nguyen TA, Hua DH, Li J. Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays. Biosens Bioelectron. 2014;56:129–36. https://doi.org/10.1016/j.bios.2014.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426.

    Article  CAS  PubMed  Google Scholar 

  45. Han X, Wang J, Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics. 2017;15:59–72. https://doi.org/10.1016/j.gpb.2016.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Castro-Giner F, Gkountela S, Donato C, Alborelli I, Quagliata L, Ng KC, et al. Cancer diagnosis using a liquid biopsy: challenges and expectations. Diagnostics. 2018;8.

  47. Lee H, Jeon S, Seo J-S, Goh S-H, Han J-Y, Cho Y. A novel strategy for highly efficient isolation and analysis of circulating tumor-specific cell-free DNA from lung cancer patients using a reusable conducting polymer nanostructure. Biomaterials. 2016;101:251–7. https://doi.org/10.1016/j.biomaterials.2016.06.003.

    Article  CAS  PubMed  Google Scholar 

  48. Jeon S, Lee H, Bae K, Yoon K, Lee E, Cho Y. Efficient capture and isolation of tumor-related circulating cell-free DNA from cancer patients using electroactive conducting polymer nanowire platforms. Theranostics. 2016;6:828–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics. 2018;10(59). https://doi.org/10.1186/s13148-018-0492-1.

  50. Fu Y, Chen T, Wang G, Gu T, Xie C, Huang J, et al. Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. J Mater Chem B. 2017;5:7133–9. https://doi.org/10.1039/C7TB01399J.

    Article  CAS  PubMed  Google Scholar 

  51. Wang G, Fu Y, Ren Z, Huang J, Best S, Li X, et al. Upconversion nanocrystal ‘armoured’ silica fibres with superior photoluminescence for miRNA detection. Chem Commun. 2018;54:6324–7. https://doi.org/10.1039/C8CC03480J.

    Article  CAS  Google Scholar 

  52. D’Agata R, Giuffrida CM, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Mol. 2017;22.

  53. Palaniappan A, Cheema JA, Rajwar D, Ammanath G, Xiaohu L, Seng Koon L, et al. Polythiophene derivative on quartz resonators for miRNA capture and assay. Analyst. 2015;140:7912–7. https://doi.org/10.1039/C5AN01663K.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83. https://doi.org/10.1186/s13045-015-0181-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers (Basel). 2017;9:8. https://doi.org/10.3390/cancers9010008.

    Article  CAS  Google Scholar 

  56. Hao N, Zhang JXJ. Microfluidic screening of circulating tumor biomarkers toward liquid biopsy. Sep Purif Rev. 2018;47:19–48. https://doi.org/10.1080/15422119.2017.1320763.

    Article  CAS  Google Scholar 

  57. Boriachek K, Islam MN, Möller A, Salomon C, Nguyen N-T, Hossain MSA, et al. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small. 2017;14:1702153. https://doi.org/10.1002/smll.201702153.

    Article  CAS  Google Scholar 

  58. Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141:450–60. https://doi.org/10.1039/C5AN01610J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yasui T, Yanagida T, Ito S, Konakade Y, Takeshita D, Naganawa T, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv. 2017;3.

  60. Matlock-Colangelo L, Cho D, Pitner CL, Frey MW, Baeumner AJ. Functionalized electrospun nanofibers as bioseparators in microfluidic systems. Lab Chip. 2012;12:1696–701. https://doi.org/10.1039/C2LC21278A.

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z, Cheng S-B, Cao P, Qiu Q-F, Chen Y, Xie M, et al. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron. 2018;122:211–6. https://doi.org/10.1016/j.bios.2018.09.033.

    Article  CAS  PubMed  Google Scholar 

  62. Boriachek K, Islam MN, Gopalan V, Lam AK, Nguyen N-T, Shiddiky MJA. Quantum dot-based sensitive detection of disease specific exosome in serum. Analyst. 2017;142:2211–9. https://doi.org/10.1039/C7AN00672A.

    Article  CAS  PubMed  Google Scholar 

  63. Sina AAI, Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJA, Trau M (2016) Real time and label free profiling of clinically relevant exosomes. Sci Rep 6:30460.

  64. Xu H, Liao C, Zuo P, Liu Z, Ye B-C. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal Chem. 2018. https://doi.org/10.1021/acs.analchem.8b03272.

  65. Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron. 2018;102:17–26. https://doi.org/10.1016/j.bios.2017.10.045.

    Article  CAS  PubMed  Google Scholar 

  66. Seo J, Seo J-H. Fabrication of an anti-biofouling plasma-filtration membrane by an electrospinning process using photo-cross-linkable zwitterionic phospholipid polymers. ACS Appl Mater Interfaces. 2017;9:19591–600. https://doi.org/10.1021/acsami.7b03308.

    Article  CAS  PubMed  Google Scholar 

  67. Gupta RK, Pandya R, Sieffert T, Meyyappan M, Koehne JE. Multiplexed electrochemical immunosensor for label-free detection of cardiac markers using a carbon nanofiber array chip. J Electroanal Chem. 2016;773:53–62. https://doi.org/10.1016/j.jelechem.2016.04.034.

    Article  CAS  Google Scholar 

  68. Buchner M, Ngoensawat U, Schenck M, Fenzl C, Wongkaew N, Matlock-Colangelo L, et al. Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurements. J Mater Chem C. 2017;5:9712–20. https://doi.org/10.1039/c7tc03251j.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Antje J. Baeumner for her guidance and help in correcting the manuscript. The author also would like to thank Mr. Arne Behrent for his critical comments on the early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nongnoot Wongkaew.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongkaew, N. Nanofiber-integrated miniaturized systems: an intelligent platform for cancer diagnosis. Anal Bioanal Chem 411, 4251–4264 (2019). https://doi.org/10.1007/s00216-019-01589-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01589-5

Keywords

Navigation