Skip to main content
Log in

Electromembrane extraction—looking into the future

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analytical microextraction techniques, including solid-phase microextraction (SPME) Arthur & Pawliszyn (Anal Chem 62:2145–2148, 1990), stir bar sorptive extraction (SBSE), Baltussen et al. (J Microcol 11:737–747, 1999), single-drop microextraction (SDME) Jeannot & Cantwell (Anal Chem 68:2236–2240, 1996), hollow-fiber liquid-phase microextraction (HF-LPME) Pedersen-Bjergaard & Rasmussen (Anal Chem 71:2650–2656, 1999), dispersive liquid-liquid microextraction (DLLME) Berijani et al (J Chromatogr A. 1123:1–9, 2006), and electromembrane extraction (EME) Pedersen-Bjergaard & Rasmussen (J Chromatogr A 1109:183–190, 2006) have gained considerable interest in recent years. The latter technique, EME, differs from the others by the fact that mass transfer and extraction is facilitated by electrokinetic migration. Thus, basic or acidic analytes are extracted in their ionized form from aqueous sample, through an organic supported liquid membrane (SLM) and into an aqueous acceptor solution under the influence of an electrical potential. EME provides pre-concentration and sample clean-up, and can be performed in 96-well format using only a few microliter organic solvent per sample (green chemistry). Extraction selectivity is controlled by the direction and magnitude of the electrical field, by the chemical composition of the SLM, and by pH in the acceptor solution and sample. This trends article discusses briefly the principle, performance, and current status of EME, and from this future directions and perspectives are identified. Unlike traditional extraction methods, EME involves electrokinetic transfer of charged analyte molecules across an organic phase (SLM) immiscible with water. This process is still not fully characterized from a fundamental point of view, and more research in this area is expected in the near future. From author’s point of view, such research at the interface between electrophoresis and partition will be highly important for future implementation of EME.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem. 1999;71:2650–6.

    Article  CAS  PubMed  Google Scholar 

  2. Pedersen-Bjergaard S, Rasmussen KE. Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A. 2006;1109:183–90.

    Article  CAS  PubMed  Google Scholar 

  3. Vårdal L, Øiestad EL, Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction of substances with weakly basic properties: a fundamental study with benzodiazepines. Bioanalysis. 2018;10:769–81.

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura M. Analyses of benzodiazepines and their metabolites in various biological matrices by LC-MS(/MS). Biomed Chromatogr. 2011;25:1283–307.

    Article  CAS  PubMed  Google Scholar 

  5. Huang C, Chen Z, Gjelstad A, Pedersen-Bjergaard S, Shen X. Electromembrane extraction. Trends Anal Chem. 2017;95:47–56.

    Article  CAS  Google Scholar 

  6. Pedersen-Bjergaard S, Huang C, Gjelstad A. Electromembrane extraction - recent trends and where to go. J Pharm Anal. 2017;7:141–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wuethrich A, Haddad PR, Quirino JP. The electric field – an emerging driver in sample preparation. Trends Anal Chem. 2016;80:604–11.

    Article  CAS  Google Scholar 

  8. Oedit A, Ramautar R, Hankemeier T, Lindenburg PW. Electroextraction and electromembrane extraction: advances in hyphenation to analytical techniques. Electrophoresis. 2016;37:1170–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rezazadeh M, Yamini Y, Seidi S. Electrically stimulated liquid-based extraction techniques in bioanalysis. Bioanalysis. 2016;8:815–28.

    Article  CAS  PubMed  Google Scholar 

  10. Ramos Payan M, Santigosa E, Fernandez Torres R, Bello Lopez MA. A new micro-chip design. A versatile combination of electromembrane extraction and liquid-phase microextraction in a single chip device. Anal Chem. 2018;90:10417–24.

    Article  CAS  PubMed  Google Scholar 

  11. Drouin N, Mandscheff J-F, Rudaz S, Schappler J. Development of a new extraction device based on parallel-electromembrane extraction. Anal Chem. 2017;89:6346–50.

    Article  CAS  PubMed  Google Scholar 

  12. Tahmasebi Z, Davarani SSH, Ebrahimzadeh H, Asgharinezhad AA. Ultra-trace determination of Cr (VI) ions in real water samples after electromembrane extraction through novel nanostructured polyaniline reinforced hollow fibers followed by electrothermal atomic absorption spectrometry. Microchem J. 2018;143:212–9.

    Article  CAS  Google Scholar 

  13. Slampova A, Sindelar V, Kuban P. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions. Anal Chim Acta. 2017;950:49–56.

    Article  CAS  PubMed  Google Scholar 

  14. Ara KM, Raofie F, Seidi S. Simultaneous extraction and determination of trace amounts of olanzapine and fluoxetine from biological fluids: comparison of conventional hollow fiber supported liquid phase microextraction and pulsed electrically assisted liquid-phase microextraction techniques. Anal Methods. 2015;7:7840–51.

    Article  CAS  Google Scholar 

  15. Roman-Hidalgo C, Maria Jesus M-V, Fernandez-Torres R, Bello-Lopez MA. Use of polymer inclusion membranes (PIMs) as support for electromembrane extraction of non-steroidal anti-inflammatory drugs and highly polar acidic drugs. Talanta. 2018;179:601–7.

    Article  CAS  Google Scholar 

  16. Sedehi S, Tabani H, Nojavan S. Electro-driven extraction of polar compounds using agarose gel as new membrane. Determination of amino acids in fruit juice and human plasma samples. Talanta. 2018;179:318–25.

    Article  CAS  PubMed  Google Scholar 

  17. Huang C, Gjelstad A, Pedersen-Bjergaard S. Selective electromembrane extraction based on isoelectric point: fundamental studies with angiotensin II antipeptide as model analyte. JMembrane Sci. 2015;481:115–23.

    Article  CAS  Google Scholar 

  18. Seip KF, Jensen H, Sønsteby MH, Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction: distribution or electrophoresis? Electrophoresis. 2013;34:792–9.

    Article  CAS  PubMed  Google Scholar 

  19. Sun J-N, Shi Y-P, Chen J. Development of ionic liquid based electromembrane extraction and its application to the enrichment of acidic compounds in pig kidney tissues. RSC Adv. 2015;47:37682–90.

    Article  CAS  Google Scholar 

  20. Hasheminasab KS, Fakhari AR. Development and application of carbon nanotubes assisted electromembrane extraction (CNTs/EME) for the determination of buprenorphine as a model of basic drugs in urine samples. Anal Chim Acta. 2013;767:75–80.

    Article  CAS  PubMed  Google Scholar 

  21. Ramos-Payán M, Fernández-Torres R, Pérez-Bernal JL, Callejón-Mochón M, Bello-López MT. A novel approach for electromembrane extraction based on the use of silver nanometallic-decorated hollow fibers. Anal Chim Acta. 2014;849:7–11.

    Article  CAS  PubMed  Google Scholar 

  22. Huang C, Gjelstad A, Pedersen-Bjergaard S. Organic solvents in electromembrane extraction: recent insights. Rev Anal Chem. 2016;35:169–83.

    Article  CAS  Google Scholar 

  23. Huang C, Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes. J Membrane Sci. 2017;526:18–24.

    Article  CAS  Google Scholar 

  24. Huang C, Gjelstad A, Seip KF, Jensen H, Pedersen-Bjergaard S. Exhaustive and stable electromembrane extraction of acidic drugs from human plasma. J Chromatogra A. 2015;1425:81–7.

    Article  CAS  Google Scholar 

  25. Drouin N, Rudaz S, Schappler J. New supported liquid membrane for electromembrane extraction of polar basic endogenous metabolites. J Pharm and Biomed Anal. 2018;159:53–9.

    Article  CAS  Google Scholar 

  26. Seip KF, Stigsson J, Gjelstad A, Balchen M, Pedersen-Bjergaard S. Electromembrane extraction of peptides - fundamental studies on the supported liquid membrane. J Sep Sci. 2011;34:3410–7.

    Article  CAS  PubMed  Google Scholar 

  27. Dominguez NC, Gjelstad A, Nadal AM, Jensen H, Petersen NJ, Honoré Hansen S, et al. Selective electromembrane extraction at low voltages based on analyte polarity and charge. J Chromatogra A. 2012;1248:48–54.

    Article  CAS  Google Scholar 

  28. Restan MS, Jensen H, Shen X, Huang C, Martinsen ØG, Kuban P, et al. Comprehensive study of buffer systems and local pH effects in electromembrane extraction. Anal Chim Acta. 2017;984:116–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lin B, Wan L, Sun X, Huang C, Pedersen-Bjergaard S, Shen X. Electromembrane extraction of high level substances: a novel approach for selective recovery of templates in molecular imprinting. J Membrane Sci. 2018;568:30–9.

    Article  CAS  Google Scholar 

  30. Hansen FA, Sticker D, Kutter JP, Petersen NJ, Pedersen-Bjergaard S. Nanoliter-scale electromembrane extraction and enrichment in a microfluidic chip. Anal Chem. 2018;90:9322–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zarghampour F, Yamini Y, Baharfar M, Faraji M. Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis. J Chromatogr A. 2018;1556:21–8.

    Article  CAS  PubMed  Google Scholar 

  32. Baharfar M, Yamini Y, Seidi S, Arain MB. Approach for downscaling of electromembrane extraction as a lab on-a-chip device followed by sensitive red-green-blue detection. Anal Chem. 2018;90:8478–86.

    Article  CAS  PubMed  Google Scholar 

  33. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Che. 1990;62:2145–8.

    Article  CAS  Google Scholar 

  34. Baltussen E, Sandra P, David F, Cramels C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcol Sep. 1999;11:737–47.

    Article  CAS  Google Scholar 

  35. Jeannot MA, Cantwell FF. Solvent microextraction into a single drop. Anal Chem. 1996;68:2236–40.

    Article  CAS  PubMed  Google Scholar 

  36. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A. 2006;1123:1–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig Pedersen-Bjergaard.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen-Bjergaard, S. Electromembrane extraction—looking into the future. Anal Bioanal Chem 411, 1687–1693 (2019). https://doi.org/10.1007/s00216-018-1512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1512-x

Keywords

Navigation