Skip to main content
Log in

An ESIPT-based fluorescent probe for the determination of hypochlorous acid (HClO): mechanism study and its application in cell imaging

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly selective and sensitive probe for the detection of hypochlorous acid (HClO) in real samples was designed and synthesized by using the specific reaction between HClO and phenyl azo group. Upon reaction with HClO, the nonfluorescent probe generated a highly fluorescent 2-(2-hydroxy-4-chlorophenyl)benzimidazole (HBI-Cl) fluorophore, which underwent the excited state intramolecular proton transfer process to give strong fluorescence turn-on. The sensing mechanism, conversion of the nonfluorescent azo moiety into the fluorescent derivative of HBI upon reaction with HClO, was verified by independent synthesis of HBI-Cl (ϕfl ≈ 0.75). The theoretical computing results were in agreement with the experimental results that the azo moiety was the reactive site to realize fluorescence detection for HClO. Additionally, the probe was successfully utilized to determine HClO in tap water, exogenous HClO in HeLa cells, and endogenous HClO in MCF-7 cells with a low detection limit and cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91(23):10771–8.

    Article  CAS  Google Scholar 

  2. Daniel C. Harris, Exploring chemical analysis, Fourth Edition. 2009, 538.

  3. Chen XQ, Tian XZ, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011;40(9):4783–804.

    Article  CAS  Google Scholar 

  4. Daugherty A, Dunn JL, Rater DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94(1):437–44.

    Article  CAS  Google Scholar 

  5. Pattison DI, Davies MJ. Evidence for rapid inter- and intramolecular chlorine transfer reactions of histamine and carnosine chloramines: implications for the prevention of hypochlorous-acid-mediated damage. Biochemistry. 2006;45(26):8152–62.

    Article  CAS  Google Scholar 

  6. Yap YW, Whiteman M, Cheung NS. Chlorinative stress: an underappreciated mediator of neurodegeneration signaling? Cell. 2007;19(2):219–28.

    CAS  Google Scholar 

  7. Wu SM, Pizzo SV. α2-Macroglobulin from rheumatoid arthritis synovial fluid: functional analysis defines a role for oxidation in inflammation. Arch Biochem Biophys. 2001;391(1):119–26.

    Article  CAS  Google Scholar 

  8. Steinbeck MJ, Nesti LJ, Sharkey PF, Parvizi J. Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J Orthop Res. 2007;25(9):1128–35.

    Article  CAS  Google Scholar 

  9. Winterbourn CC, Kettle AJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. J Free Radical Biol Med. 2000;29(5):403–9.

    Article  CAS  Google Scholar 

  10. Zha J, Fu B, Qin C, Zeng L, Hu X. A ratiometric fluorescent probe for rapid and sensitive visualization of hypochlorite in living cells. RSC Adv. 2014;4(81):43110–3.

    Article  CAS  Google Scholar 

  11. Hou JT, Wu MY, Li K, Yang J, Yu KK, Xie YM, et al. Mitochondria-targeted colorimetric and fluorescent probes for hypochlorite and their applications for in vivo imaging. Chem Commun. 2014;50(63):8640–3.

    Article  CAS  Google Scholar 

  12. Emrullahoglu M, Ucuncu M, Karakus E. A BODIPY aldoxime-based chemodosimeter for highly selective and rapid detection of hypochlorous acid. Chem Commun. 2013;49(71):7836–8.

    Article  CAS  Google Scholar 

  13. Cheng G, Fan J, Sun W, Cao J, Hu C, Peng X. A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. Chem Commun. 2014;50(8):1018–20.

    Article  CAS  Google Scholar 

  14. Lu F, Nabeshima T. A highly selective and sensitive turn-on chemodosimeter for hypochlorous acid based on an iridium (III) complex and its application to bioimaging. Dalton Trans. 2014;43(25):9529–36.

    Article  CAS  Google Scholar 

  15. Yuan L, Lin W, Xie Y, Chen B, Song J. Fluorescent detection of hypochlorous acid from turn-on to fret-based ratiometry by a HClO-mediated cyclization reaction. Chem Eur J. 2012;18(9):2700–6.

    Article  CAS  Google Scholar 

  16. Sun Z, Liu F, Chen Y, Tam PKH, Yang D. A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett. 2008;10(11):2171–4.

    Article  CAS  Google Scholar 

  17. Chen X, Wang X, Wang S, Shi W, Wang K, Ma H. A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chem Eur J. 2008;14(15):4719–24.

    Article  CAS  Google Scholar 

  18. Yang YK, Cho HJ, Lee J, Shin I, Tae J. A rhodamine-hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings. Org Lett. 2009;11(4):859–61.

    Article  CAS  Google Scholar 

  19. Zhou Y, Li JY, Chu KH, Liu K, Yao C, Li JY. Fluorescence turn-on detection of hypochlorous acid via HOCl-promoted dihydrofluorescein ether oxidation and its application in vivo. Chem Commun. 2012;48(39):4677–9.

    Article  CAS  Google Scholar 

  20. Shepherd J, Hilderbrand SA, Waternan P, Heinecke JW, Weissleder R, Libby P. A novel fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem Biol. 2007;14(11):1221–7.

    Article  CAS  Google Scholar 

  21. Liu SR, Wu SP. Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. Org Lett. 2013;15(4):878–81.

    Article  CAS  Google Scholar 

  22. Gao K, Wang B, Gao J, Yan H, Wen J, Li W, et al. HEPES is not suitable for fluorescence detection of HClO: a novel probe for HClO in absolute PBS. Chem Commun. 2016;52(28):5064–7.

    Article  Google Scholar 

  23. Pan Y, Huang J, Han Y. A new ESIPT-based fluorescent probe for highly selective and sensitive detection of HClO in aqueous solution. Tetrahedron Lett. 2017;58(13):1301–4.

    Article  CAS  Google Scholar 

  24. Pang Y, Chen W. Excited-state intramolecular proton transfer in 2-(2′-hydroxyphenyl) benzoxazole derivatives. In: Han KL, Zhao GJ, editors. Hydrogen bonding and transfer in the excited state. West Sussex: John Wiley & Sons; 2011. p. 747–60.

    Google Scholar 

  25. Vazquez SR, Rodriguez MCR, Mosquera M, Rodriguez Prieto F. Excited-state intramolecular proton transfer in 2-(3′-hydroxy-2′-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. J Phys Chem A. 2007;111(10):1814–26.

    Article  CAS  Google Scholar 

  26. Mahmoodi NO, Ghavidast A, Mirkhaef S, Zanjanchi MA. Photochromism of azobenzene-thiol-1, 3-diazabicyclo-[3.1.0] hex-3-ene on silver nanoparticles. Dyes Pigments. 2015;118:110–7.

    Article  CAS  Google Scholar 

  27. Setsukinai KI, Urano Y, Kakinuma K, Majima HJ, Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem. 2003;278(3):3170–5.

    Article  CAS  Google Scholar 

  28. Li X, Zhang G, Ma H, Zhang D, Li J, Zhu D. 4,5-Dimethylthio-4′-[2-(9-anthryloxy)ethylthio] tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen. J Am Chem Soc. 2004;126(37):11543–8.

    Article  CAS  Google Scholar 

  29. Song C, Ye Z, Wang G, Yuan J, Guan Y. A lanthanide-complex-based ratiometric luminescent probe specific for peroxynitrite. Chem-Eur J. 2010;16(22):6464–72.

    Article  CAS  Google Scholar 

  30. Hu J, Wong N, Lu M, Chen X, Ye S, Zhao A, et al. HKOCl-3: a fluorescent hypochlorous acid probe for live-cell and in vivo imaging and quantitative application in flow cytometry and a 96-well microplate assay. Chem Sci. 2016;7:2094–9.

    Article  CAS  Google Scholar 

  31. Gassman, P. G., Nitrenium ions. Acc Chem Res 2002, 36(3):26–33.

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate the financial supports from the Fundamental Research Funds of Chinese Academy of Agricultural Science (2015ZL051). Dr. Yonghuan He appreciates a postdoctoral fellowship awarded by the Innovation Team for Control of Chemical Hazards during Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Chen.

Ethics declarations

This research did not involve human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Xu, Y., Shang, Y. et al. An ESIPT-based fluorescent probe for the determination of hypochlorous acid (HClO): mechanism study and its application in cell imaging. Anal Bioanal Chem 410, 7007–7017 (2018). https://doi.org/10.1007/s00216-018-1332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1332-z

Keywords

Navigation