Skip to main content

Advertisement

Log in

Detection of organic compounds in impact glasses formed by the collision of an extraterrestrial material with the Libyan Desert (Africa) and Tasmania (Australia)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Impact glasses are rich silica melted formed at high temperature and pressure by the impact of an extraterrestrial body on Earth. Here, Libyan Desert glasses (LDGs) and Darwin glasses (DGs) were studied. Two non-destructive analytical techniques were used to detect and characterize organic compounds present in their inclusions: Raman spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM-EDS). Phytoliths, humboldtine, palmitic acid, myristic acid, oleic acid, 4-methyl phthalic acid, and S-H stretching vibrations of amino acids were identified. The presence of these particular organic compounds in such materials has not been reported so far, providing information about (a) the ancient matter of the area where the impact glasses were formed, (b) organic matter belonging to the extraterrestrial body which impacted on the Earth, or (c) even to current plant or bacterial life, which could indicate an active interaction of the LDG and DG with the surrounding environment. Moreover, the identification of fullerene allowed us to know a pressure (15 GPa) and temperatures (670 K or 1800–1900 K) at which samples could be subjected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooper G, Horz F, Spees A, Chang S. Highly stable meteoritic organic compounds as markers of asteroidal delivery. Earth Planet Sci Lett. 2014;385:206–15.

    Article  CAS  Google Scholar 

  2. Pizzarello S, Shock E. The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol. 2010;2:a002105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sephton MA, Wright IP, Gilmour I, de Leeuw JW, Grady MM, Pillinger CT. High molecular weight organic matter in martian meteorites. Planet Space Sci. 2002;50:711–6.

    Article  CAS  Google Scholar 

  4. Bailey MJ, Howard KT, Kirkby KJ, Jeynes C. Characterisation of inhomogeneous inclusions in Darwin glass using ion beam analysis. Nucl Inst Methods Phys Res B. 2009;267:2219–24.

    Article  CAS  Google Scholar 

  5. Barrat JA, Jahn BM, Amossé J, Rocchia R, Keller F, Poupeau GR, et al. Geochemistry and origin of Libyan Desert glasses. Geochim Cosmochim Acta. 1997;61:1953–9.

    Article  CAS  Google Scholar 

  6. Pratesi G, Viti C, Cipriani C, Mellini M. Geochemistry and origin of Libyan Desert glasses. Geochim Cosmochim Acta. 2002;66:903–11.

    Article  CAS  Google Scholar 

  7. Greshake A, Koeberl C, Fritz J, Reimold WU. Brownish inclusions and dark streaks in Libyan Desert glass: evidence for high-temperature melting of the target rock. Meteorit Planet Sci. 2010;45:973–89.

    Article  CAS  Google Scholar 

  8. Giuli G, Paris E, Pratesi G, Koeberl C, Cipriani C. Iron oxidation state in the Fe- rich layer and silica matrix of Libyan Desert glass: a high-resolution XANES study. Meteorit Planet Sci. 2003;38:1181–6.

    Article  CAS  Google Scholar 

  9. Swaenen M, Stefaniak EA, Frost R, Worobiec A, Van Grieken R. Investigation of inclusions trapped inside Libyan Desert glass by Raman microscopy. Anal Bioanal Chem. 2010;397:2659–65.

    Article  CAS  PubMed  Google Scholar 

  10. Howard KT. Physical distribution trends in Darwin glass. Meteorit Planet Sci. 2009;44:115–29.

    Article  CAS  Google Scholar 

  11. Lo CH, Howard KT, Chung SL, Meffre S. Laser fusion argon-40/argon-39 ages of Darwin impact glass. Meteorit Planet Sci. 2002;37:1555–62.

    Article  CAS  Google Scholar 

  12. Aramendia J, Gomez-Nubla L, Fdez-Ortiz de Vallejuelo S, Castro K, Murelaga X, Madariaga JM. New findings by Raman micro spectroscopy in the bulk and inclusions trapped in Libyan Desert glass. Spectrosc Lett. 2011;44:521–5.

    Article  CAS  Google Scholar 

  13. Gomez-Nubla L, Aramendia J, Alonso-Olazabal A, Fdez-Ortiz de Vallejuelo S, Castro K, Ortega LA, et al. Darwin impact glass study by Raman spectroscopy in combination with other spectroscopic techniques. J Raman Spectrosc. 2015;46:913–9.

    Article  CAS  Google Scholar 

  14. Kramers JD, et al. Unique chemistry of a diamond-bearing pebble from the Libyan Desert glass strewnfield, SW Egypt: evidence for a shocked comet fragment. Earth Planet Sci Lett. 2013;382:21–31.

    Article  CAS  Google Scholar 

  15. Meisel T, Koeberl C, Ford RJ. Geochemistry of Darwin impact glass and target rocks. Geochim Cosmochim Acta. 1990;54:1463–74.

    Article  CAS  Google Scholar 

  16. Howard KT, et al. Biomass preservation in impact melt ejecta. Nat Geosci. 2013;6:1018–22.

    Article  CAS  Google Scholar 

  17. Sapers HM, Osinski GR, Banerjee NR, Preston LJ. Enigmatic tubular features in impact glass. Geology. 2014;42:471–4.

    Article  CAS  Google Scholar 

  18. Schultz PH, Harris RS, Clemett SJ, Thomas-Keprta KL, Zarate M. Preserved flora and organics in impact melt breccias. Geology. 2014;42:515–8.

    Article  CAS  Google Scholar 

  19. Sapers HM, Banerjee NR, Osinski GR. Potential for impact glass to preserve microbial metabolism. Earth Planet Sci Lett. 2015;430:95–104.

    Article  CAS  Google Scholar 

  20. Marshall CP, Edwards HGM, Jehlicka J. Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology. 2010;10:229–43.

    Article  CAS  PubMed  Google Scholar 

  21. Bost N, et al. Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars. Planet Space Sci. 2015;108:87–97.

    Article  Google Scholar 

  22. Gomez-Nubla L, Aramendia J, Fdez-Ortiz de Vallejuelo S, Alonso-Olazabal A, Castro K, Zuluaga MC, et al. Multispectroscopic methodology to study Libyan Desert glass and its formation conditions. Anal Bioanal Chem. 2017;409:3597–610.

    Article  CAS  PubMed  Google Scholar 

  23. Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Fernández LA, Madariaga JM. On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal Bioanal Chem. 2005;382:248–58.

    Article  CAS  PubMed  Google Scholar 

  24. Lafuente B, Downs RT, Yang H, Stone N. The power of databases: the RRUFF project. In: Highlights in mineralogical crystallography (Armbruster T, Danisi RM, editors) Berlin; 2015. p. 1–30.

  25. Adar F. Resonance enhancement of Raman spectroscopy: friend or foe? Spectroscopy. 2013;28(6)

  26. Tourwe E, Baert K, Hubin A. Surface-enhanced Raman scattering (SERS) of phthalic acid and 4-methyl phthalic acid on silver colloids as a function of pH. Vib Spectrosc. 2006;40:25–32.

    Article  CAS  Google Scholar 

  27. Thomas A. Fats and fatty oils. In: Ullmann’s encyclopedia of industrial chemistry, vol. 14. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012.

    Google Scholar 

  28. Albaigés J, Frei RW, Merian E. Chemistry and analysis of hydrocarbons in the environment 5. Glasgow: Gordon and Breach Science Publishers; 1983.

    Google Scholar 

  29. Summons RE, et al. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology. 2011;11:157–81.

    Article  PubMed  Google Scholar 

  30. Huang Y, Aponte JC, Zhao J, Tarozo R, Hallmann C. Hydrogen and carbon isotopic ratios of polycyclic aromatic compounds in two CM2 carbonaceous chondrites and implications for prebiotic organic synthesis. Earth Planet Sci Lett. 2015;426:101–8.

    Article  CAS  Google Scholar 

  31. Gallagher KL, Alfonso-Garcia A, Sanchez J, Potma EO, Santos GM. Plant growth conditions alter phytolith carbon. Front Plant Sci. 2015;6:753.

    PubMed  PubMed Central  Google Scholar 

  32. Frank O, Jehlicka J, Edwards HGM. Raman spectroscopy as tool for the characterization of thio-polyaromatic hydrocarbons in organic minerals. Spectrochim Acta A. 2007;68:1065–9.

    Article  CAS  Google Scholar 

  33. Socrates G. Infrared and Raman characteristic group frequencies. England: John Wiley and Sons edition; 2001.

  34. Burckle LH, Delaney JS. Terrestrial microfossils in Antarctic ordinary chondrites. Meteorit Planet Sci. 1999;34:475–8.

    Article  CAS  Google Scholar 

  35. Blank VD, et al. Synthesis of superhard and ultrahard materials by 3D-polymerization of C60, C70 fullerenes under high pressure (15 Gpa) and temperatures up to 1820 K. Z Naturforsch. 2006;61b:1547–54.

    Article  Google Scholar 

  36. Kuznetsov VL, Butenko YV. Nanodiamond graphitization and properties of onion-like carbon. In: Synthesis, Properties and Applications of ultracrystalline diamong, Gruen DM, Shenderova OA, Vul AY, editors. Springer: Dordrecht, The Netherland, 2005; p. 199–216. 

  37. Obraztsova D, Fujii M, Hayashi S, Kuznetsov VL, Butenko YV, Chuvilin AL. Raman identification of onion-like carbon. Carbon. 1998;36:821–6.

    Article  CAS  Google Scholar 

  38. Elsila JE, de Leon NP, Plows FL, Buseck PR, Zare RN. Fullerenes in extracts of impact breccia samples from Sudbury, Gardnos, and Ries impact craters and the effects of aggregation on C60 detection. Geochim Cosmochim Acta. 2005;69:2891–9.

    Article  CAS  Google Scholar 

  39. Heymann D, Chibante LPF, Brooks RR, Wolbach WS, Smalley RE. Fullerenes in the K/T boundary layer. Science. 1994;265:645–7.

    Article  CAS  PubMed  Google Scholar 

  40. Heymann D, Jenneskens LW, Jehlička J, Koper C, Vlietstra E. Fullerenes in extracts of impact breccia samples from Sudbury, Gardnos, and Ries impact craters and the effects of aggregation on C60 detection. Fuller Nanotub Car N. 2003;11:333–70.

    Article  CAS  Google Scholar 

  41. Miura Y, Kobyashi H, Kedves M, Gucsik A. Carbon source from limestone target by impact reaction at the K/T boundary. 30th Lunar and Planetary Science Conference Proceedings, Houston, abs.#1522; 1999.

  42. Abate B, Koeberl C, Kruger FJ, Underwood JR Jr. BP and oasis impact structures, Libya, and their relation to Libyan Desert glass. Geol Soc Am. 1999;339:177–92.

    Google Scholar 

  43. Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater. 1990;2:557–63.

    Article  CAS  Google Scholar 

  44. Frost RL, Weier ML. Thermal decomposition of humboldtine—a high resolution thermogravimetric and hot stage Raman spectroscopic study. J Therm Anal Calorim. 2004;75:277–91.

    Article  CAS  Google Scholar 

  45. Frost RL. Raman spectroscopy of natural oxalates. Anal Chim Acta. 2004;517:207–14.

    Article  CAS  Google Scholar 

  46. Mishra AK, Murli C, Garg N, Chitra R, Sharma SM. Pressure-induced structural transformations in Bis (glycinium) oxalate. J Phys Chem B. 2010;114:17084–91.

    Article  CAS  PubMed  Google Scholar 

  47. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2015;46:4–20.

    Article  CAS  Google Scholar 

  48. Kumar R, Sripriya R, Balaji S, Senthil Kumar M, Sehgal PK. Physical characterization of succinylated type I collagen by Raman spectra and MALDI-TOF/MS and in vitro evaluation for biomedical applications. J Mol Struct. 2011;994:117–24.

    Article  CAS  Google Scholar 

  49. Lalman JA, Bagley DM. Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res. 2001;35:2975–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by MINECO, the Spanish Ministry of Economy and Competitiveness and FEDER, the European Development Regional Fund, through the project ESP2014-56138-C3-2-R, as well as by the Special Action EA13/28 Funded by the University of the Basque Country (UPV/EHU). Technical and human support provided by the Raman-LASPEA Laboratory of the SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Gómez-Nubla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Nubla, L., Aramendia, J., Fdez-Ortiz de Vallejuelo, S. et al. Detection of organic compounds in impact glasses formed by the collision of an extraterrestrial material with the Libyan Desert (Africa) and Tasmania (Australia). Anal Bioanal Chem 410, 6609–6617 (2018). https://doi.org/10.1007/s00216-018-1266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1266-5

Keywords

Navigation