Skip to main content
Log in

Preparation of a molecularly imprinted sensor based on quartz crystal microbalance for specific recognition of sialic acid in human urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel molecularly imprinted quartz crystal microbalance (QCM) sensor was successfully prepared for selective determination of sialic acid (SA) in human urine samples. To obtain the QCM sensor, we first modified the gold surface of the QCM chip by self-assembling of allylmercaptane to introduce polymerizable double bonds on the chip surface. Then, SA molecularly imprinted polymer (MIP) nanofilm was attached to the modified QCM chip surface. For comparison, we have also characterized the nonmodified and improved surfaces of the QCM sensor by using atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. We then tested the selectivity and detection limit of the imprinted QCM sensor via a series of adsorption experiments. The results show a linear response in the range of 0.025–0.50 μmol L−1 for sialic acid. Moreover, the limit of detection (LOD) of the prepared imprinted QCM sensor was found to be 1.0 nmol L−1 for sialic acid, and high recovery values range from 87.6 to 108.5% with RSD < 8.7 (n = 5) for the spiked urine sample obtained. Overall, this work presents how a novel QCM sensor was developed and used to detect sialic acid in human urine samples.

Specific recognition of sialic acid by the MIP-QCM sensor system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003;3:267–75.

    Article  CAS  PubMed  Google Scholar 

  2. Sankoh S, Thammakhet C, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P. 4-Mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection. Biosens Bioelectron. 2016;85:743–50.

    Article  CAS  PubMed  Google Scholar 

  3. Lamari FN, Karamanos NK. Separation methods for sialic acids and critical evaluation of their biologic relevance. J Chromatogr B. 2002;781:3–19.

    Article  CAS  Google Scholar 

  4. Karina PG, Martin AC. Sialic acid: a novel marker of cardiovascular disease. Clin Biochem. 2006;39:667–81.

    Article  CAS  Google Scholar 

  5. Tebani A, Schlemmer D, Imbard A, Rigal O, Porquet D, Benoist JF. Measurement of free and total sialic acid by isotopic dilution liquid chromatography tandem mass spectrometry method. J Chromatogr B. 2011;879:3694–9.

    Article  CAS  Google Scholar 

  6. Van der Ham M, De Koning TJ, Lefeber D, Fleer A, Berthil HC, Prinsen MT, et al. Liquid chromatography–tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid. J Chromatogr B. 2010;878:1098–102.

    Article  CAS  Google Scholar 

  7. Orozco-Solano MI, Priego-Capotea F, Luque de Castro MD. Ultrasound-assisted hydrolysis and chemical derivatization combined to lab-on-valve solid-phase extraction for the determination of sialic acids in human biofluids by liquid chromatography-laser induced fluorescence. Anal Chim Acta. 2013;766:69–76.

    Article  CAS  PubMed  Google Scholar 

  8. Hurum DC, Rohrer JS. Determination of sialic acids in infant formula by chromatographic methods: a comparison of high-performance anion-exchange chromatography with pulsed amperometric detection and ultra-high-performance liquid chromatography methods. J Dairy Sci. 2012;95:1152–61.

    Article  CAS  PubMed  Google Scholar 

  9. Meininger M, Stepath M, Hennig R, Cajic S, Rapp E, Rotering H, et al. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand. J Chromatogr B. 2016;1012:193–203.

    Article  CAS  Google Scholar 

  10. Spichtig V, Michaud J, Austin S. Determination of sialic acids in milks and milk-based products. Anal Biochem. 2010;405:28–40.

    Article  CAS  PubMed  Google Scholar 

  11. Song H, Wang Y, Zhang L, Tian L, Luo J, Zhao N, et al. An ultrasensitive and selective electrochemical sensor for determination of estrone 3-sulfate sodium salt based on molecularly imprinted polymer modified carbon paste electrode. Anal Bioanal Chem. 2017;409(27):6509–19.

    Article  CAS  PubMed  Google Scholar 

  12. Feng F, Zheng JW, Qin P, Han T, Zhao DY. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Talanta. 2017;167:94–102.

    Article  CAS  PubMed  Google Scholar 

  13. Ratautaite V, Plausinaitis D, Baleviciute I, Mikoliunaite L, Ramanaviciene A, Ramanavicius A. Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy. Sensors Actuators B Chem. 2015;212:63–71.

    Article  CAS  Google Scholar 

  14. Gültekin A, Karanfil G, Kuş M, Sönmezoğlu S, Say R. Preparation of MIP-based QCM sensor for detection of caffeic acid. Talanta. 2014;119:533–7.

    Article  CAS  PubMed  Google Scholar 

  15. Eren TJ, Atar N, Yola ML, Karimi-Maleh H. A sensitive molecularly imprinted polymer based quartz crystal microbalance sensor for selective determination of lovastatin in red yeast rice. Food Chem. 2015;185:430–6.

    Article  CAS  PubMed  Google Scholar 

  16. Guo HS, Kim J, Chang SM, Kim W. Chiral recognition of mandelic acid by L-phenylalanine-modified sensor using quartz crystal microbalance. Biosens Bioelectron. 2009;24:2931–4.

    Article  CAS  PubMed  Google Scholar 

  17. Yola ML, Uzun L, Özaltın N, Denizli A. Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta. 2014;120:318–24.

    Article  CAS  PubMed  Google Scholar 

  18. Ma XT, He XW, Li WY, Zhang YK. Epitope molecularly imprinted polymer coated quartz crystal microbalance sensor for the determination of human serum albumin. Sensors Actuators B Chem. 2017;246:879–86.

    Article  CAS  Google Scholar 

  19. Kim JM, Yang JC, Park JY. Quartz crystal microbalance (QCM) gravimetric sensing of theophylline via molecularly imprinted microporous polypyrrole copolymers. Sensors Actuators B Chem. 2015;206:50–5.

    Article  CAS  Google Scholar 

  20. EL-Sharif HF, Aizawa H, Reddy SM. Spectroscopic and quartz crystal microbalance (QCM) characterisation of protein-based MIPs. Sensors Actuators B Chem. 2015;206:239–45.

    Article  CAS  Google Scholar 

  21. Yang JC, Shin HK, Hong SW, Park JY. Lithographically patterned molecularly imprinted polymer for gravimetric detection of trace atrazine. Sensors Actuators B Chem. 2015;216:476–81.

    Article  CAS  Google Scholar 

  22. Gupta VK, Yola ML, Atar N. A novel molecular imprinted sensor based quartz crystal microbalance for determination of kaempferol. Sensors Actuators B Chem. 2014;194:79–85.

    Article  CAS  Google Scholar 

  23. Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J Am Chem Soc. 2003;125:3493–502.

    Article  CAS  PubMed  Google Scholar 

  24. Duan SJ, He XW, Chen LX, Zhang YK. 4-Mercaptophenylboronic acid functionalized quartz crystal microbalances sensor for the determination of sialic acid. Chem J Chin Univ. 2012;33:462–9.

    Google Scholar 

  25. Gültekin A, Karanfίl G, Sönmezoģlu S, Say R. Development of a highly sensitive MIP based-QCM sensor for selective determination of cholic acid level in body fluids. Mater Sci Eng C. 2014;42:436–42.

    Article  CAS  Google Scholar 

  26. Yola ML, Eren TJ, Atar N. Molecular imprinted sensor based on surface plasmon-resonance: application to the sensitive determination of amoxicillin. Sensors Actuators B Chem. 2014;195:28–35.

    Article  CAS  Google Scholar 

  27. Homayoonnia S, Zeinali S. Design and fabrication of capacitive sensor based on MOF nanoparticles as sensing layer for VOCs detection. Sensors Actuators B Chem. 2016;237:776–86.

    Article  CAS  Google Scholar 

  28. Qiu XZ, Xu XY, Liang Y, Hua YB, Guo HS. Fabrication of a molecularly imprinted polymer immobilized membrane with nanopores and its application in determination of β2-agonists in pork samples. J Chromatogr A. 2016;1249:79–85.

    Article  CAS  Google Scholar 

  29. Bakhshpour M, Özgür E, Bereli N, Denizli A. Microcontact imprinted quartz crystal microbalance nanosensor for protein C recognition. Colloids Surf, B. 2017;151:264–70.

    Article  CAS  Google Scholar 

  30. Guo HS, Kim J, Pham XH, Chang SM, Kim W. Versatile method for chiral recognition by the quartz crystal microbalance: chiral mandelic acid as the detection model. Langmuir. 2009;25:648–52.

    Article  CAS  PubMed  Google Scholar 

  31. Wang JH, Hansen EH, Gammelgaard B. Flow injection on-line dilution for multi-element determination in human urine with detection by inductively coupled plasma mass spectrometry. Talanta. 2001;55:117–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by grants from the Natural Science Foundation of Guangdong Province (Nos. 2014A030307024, 2015A030313750) and the Innovation Projects of the Department of Education of Guangdong Province (2014KTSCX169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuzhen Qiu or Huishi Guo.

Ethics declarations

The authors declare that all individual participants from whom the serum samples were obtained gave informed consent, and the studies have been approved by the Shaoguan University Ethics Committee and have been performed in accordance with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, X., Xu, XY., Chen, X. et al. Preparation of a molecularly imprinted sensor based on quartz crystal microbalance for specific recognition of sialic acid in human urine. Anal Bioanal Chem 410, 4387–4395 (2018). https://doi.org/10.1007/s00216-018-1094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1094-7

Keywords

Navigation