Skip to main content
Log in

A strategy of utilizing Zn(II) as metallic pivot in room temperature ionic liquid to prepare molecularly imprinted polymers for compound with intramolecular hydrogen bonds

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A method of preparing molecularly imprinted polymers (MIPs) with Zn(II) as a metallic pivot was adopted to solve the problem of imprinting compound with intramolecular hydrogen bonds by forming stronger coordination binding interaction among the template–functional monomer-Zn2+ complex. A ternary porogenic system including dimethyl sulfoxide, dimethylformamide, and room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate was employed to fabricate imprinted monolith with high porosity and good flow-through properties, in which chicoric acid (CA), zinc acetate, 4-vinylpyridine (4-VP), and ethylene glycol dimethacrylate (EDMA) was the template, metallic ion, functional monomer, as well as crosslinker, respectively. The influence of polymerization factors including the 4-VP-CA ratio, monomer-crosslinker ratio, template-Zn2+ ratio on imprinting factors was systematically investigated. When the ratio of 4-VP to CA was 24:1, the greatest IF value (24.81) was achieved on the CA-MIP prepared with zinc acetate. In addition, off-line SPE with the optimal MIPs monolith led to high purity of CA (98.0% ± 0.5%) from extraction of Cichorium intybus L. roots with the recovery of 77.5% ± 2.5% (n = 6). As a conclusion, the strategy of introducing metal ions as metal pivot to prepare MIPs was a powerful method for the MIPs synthesis to the template molecules with intramolecular hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tang L, Zhao CY, Wang XH, Li RS, Yang JR, Huang YP, et al. Macromolecular crowding of molecular imprinting: A facile pathway to produce drug delivery devices for zero-order sustained release. Inter J Pharm. 2015;496:822–33.

    Article  CAS  Google Scholar 

  2. Maier NM, Lindner W. Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem. 2007;389(2):377–97.

    Article  CAS  Google Scholar 

  3. Wang Z, Li F, Xia J, Xia L, Zhang F, Bi S, et al. An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin. Biosens Bioelectron. 2014;61:391–6.

    Article  Google Scholar 

  4. Zuo JJ, Zhao XY, Ju XC, Qiu S, Hu WS, Fan T, et al. A new molecularly imprinted polymer (mip)-based electrochemical sensor for monitoring Cardiac Troponin I (cTnI) in the serum. Electroanalysis. 2016;28(9):2044–9.

    Article  CAS  Google Scholar 

  5. Tamayo FG, Turiel E, Martin-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A. 2007;1152(1/2):32–40.

    Article  CAS  Google Scholar 

  6. Kurczewska J, Ceglowski M, Pecyna P, Ratajczak M, Gajecka M, Schroeder G. Molecularly imprinted polymer as drug delivery carrier in alginate dressing. Mater Lett. 2017;201:46–9.

    Article  CAS  Google Scholar 

  7. Kempe H, Parareda Pujolràs A, Kempe M. Molecularly imprinted polymer nanocarriers for sustained release of erythromycin. Pharm Res. 2015;32(2):375–88.

    Article  CAS  Google Scholar 

  8. Sahiner N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci. 2013;38(9):1329–56.

    Article  CAS  Google Scholar 

  9. Marchetti L, Levine M. Biomimetic catalysis. ACS Catal. 2011;1(9):1090–118.

    Article  CAS  Google Scholar 

  10. Emgenbroich M, Wulff G. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers. Chem Eur J. 2003;9(17):4106–17.

    Article  CAS  Google Scholar 

  11. Pichon V, Chapuis-Hugon F. Role of molecularly imprinted polymers for selective determination of environmental pollutants – a review. Anal Chim Acta. 2008;622(1/2):48–61.

    Article  CAS  Google Scholar 

  12. Ban L, Han X, Wang XH, Huang YP, Liu ZS. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids. Anal Bioanal Chem. 2013;405:8597–605.

    Article  CAS  Google Scholar 

  13. Lata K, Sharma R, Naik L, Rajput YS, Mann B. Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chem. 2015;184:176–82.

    Article  CAS  Google Scholar 

  14. You QP, Peng MJ, Zhang YP, Guo JF, Shi SY. Preparation of magnetic dummy molecularly imprinted polymers for selective extraction and analysis of salicylic acid in Actinidia chinensis. Anal Bioanal Chem. 2014;406(3):831–9.

    Article  CAS  Google Scholar 

  15. Rahangdale D, Archana G, Kumar A. Molecularly imprinted chitosan-based adsorbents for the removal of salicylic acid and its molecular modeling to study the influence of intramolecular hydrogen bonding of template on molecular recognition of molecularly imprinted polymer. Adsorpt Sci Technol. 2016;34(7/8):405–25.

    Article  CAS  Google Scholar 

  16. Zhang T, Liu F, Chen W, Wang J, Li K. Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers. Anal Chim Acta. 2001;450(1):53–61.

    Article  CAS  Google Scholar 

  17. Subat M, Borovik AS, König B. Synthetic creatinine receptor: Imprinting of a lewis acidic zinc(ii)cyclen binding site to shape its molecular recognition selectivity. J Am Chem Soc. 2004;126(10):3185–90.

    Article  CAS  Google Scholar 

  18. Qu S, Wang X, Tong C, Wu J. Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure. J Chromatogr A. 2010;1217(52):8205–11.

    Article  CAS  Google Scholar 

  19. Recillas Mota JJ, Bernad Bernad MJ, Mayoral-Murillo JA, Gracia Mora J. Synthesis and characterization of molecularly imprinted polymers with metallic zinc center for enrofloxacin recognition. Reac Funct Polym. 2013;73(8):1078–85.

    Article  CAS  Google Scholar 

  20. Shan J, Wang B. Preparation and characterization of a metal-complexing imprinted polymer for improved quercetin recognition. Sep Sci Technol. 2010;46(1):164–71.

    Article  Google Scholar 

  21. Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661(1):1–16.

    Article  CAS  Google Scholar 

  22. Lei Z, Chen B, Koo YM, MacFarlane DR. Introduction: ionic liquids. Chem Rev. 2017;117(10):6633–5.

    Article  Google Scholar 

  23. Wei ZH, Mu LN, Huang YP, Liu ZS. Imprinted monoliths: recent significant progress in analysis field. Trends Anal Chem. 2017;86:84–92.

    Article  CAS  Google Scholar 

  24. Li F, Chen XX, Huang YP, Liu ZS. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith. J Chromatogr A. 2015;1425:180–8.

    Article  CAS  Google Scholar 

  25. Sun X, Zhao CY, Wang XH, Huang YP, Liu ZS. Thermoresponsive ketoprofen-imprinted monolith prepared in ionic liquid. Anal Bioanal Chem. 2014;406:5359–67.

    Article  CAS  Google Scholar 

  26. Bai LH, Chen XX, Huang YP, Zhang QW, Liu ZS. Chiral separation of racemic mandelic acids by use of an ionic liquid-mediated imprinted monolith with a metal ion as self-assembly pivot. Anal Bioanal Chem. 2013;405:8935–43.

    Article  CAS  Google Scholar 

  27. Zhong D-D, Huang Y-P, Xin X-L, Liu Z-S, Aisa HA. Preparation of metallic pivot-based imprinted monolith for polar template. J Chromatogr B. 2013;934:109–16.

    Article  CAS  Google Scholar 

  28. Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008;108(3):1028–38.

    Article  CAS  Google Scholar 

  29. Heimler D, Isolani L, Vignolini P, Romani A. Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem. 2009;114(3):765–70.

    Article  CAS  Google Scholar 

  30. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203.

    Article  CAS  Google Scholar 

  31. Facino RM, Carini M, Aldini G, Marinello C, Arlandini E, Franzoi L, et al. Direct characterization of caffeoyl esters with antihyaluronidase activity in crude extracts from Echinacea angustifolia roots by fast atom bombardment tandem mass spectrometry. Farmaco. 1993;48(10):1447–61.

    CAS  Google Scholar 

  32. Perry NB, Burgess EJ, Vl G. Echinacea standardization: analytical methods for phenolic compounds and typical levels in medicinal species. J Agric Food Chem. 2001;49(4):1702–6.

    Article  CAS  Google Scholar 

  33. Abo KA, Fred-Jaiyesimi AA, Jaiyesimi AEA. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in Southwestern Nigeria. J Ethnopharmacol. 2008;115(1):67–71.

    Article  CAS  Google Scholar 

  34. Lee SU, Shin C-G, Lee C-K, Lee YS. Caffeoylglycolic and caffeoylamino acid derivatives, halfmers of l-chicoric acid, as new HIV-1 integrase inhibitors. Eur J Med Chem. 2007;42(10):1309–15.

    Article  CAS  Google Scholar 

  35. Dalby-Brown L, Barsett H, Landbo A-KR, Meyer AS, Mølgaard P. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem. 2005;53(24):9413–23.

    Article  CAS  Google Scholar 

  36. Mølgaard P, Johnsen S, Christensen P, Cornett C. HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products. J Agric Food Chem. 2003;51(24):6922–33.

    Article  Google Scholar 

  37. Lee J, Scagel CF. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009;115(2):650–6.

    Article  CAS  Google Scholar 

  38. Wang X, Geng Y, Li F, Gao Q, Shi X. Preparative separation of cichoric acid from Echinacea purpurea by pH-zone refining counter-current chromatography. J Chromatogr A. 2006;1103(1):166–9.

    Article  CAS  Google Scholar 

  39. Lee J, Scagel CF. Chicoric acid: Chemistry, distribution, and production. Front Chem. 2013;1:40.

    Article  Google Scholar 

  40. Saad EM, Madbouly A, Ayoub N, El Nashar RM. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Anal Chim Acta. 2015;877:80–9.

    Article  CAS  Google Scholar 

  41. Sanaei Z, Shahrabi T, Ramezanzadeh B. Synthesis and characterization of an effective green corrosion inhibitive hybrid pigment based on zinc acetate Cichorium intybus L leaves extract (ZnA-CIL.L): electrochemical investigations on the synergistic corrosion inhibition of mild steel in aqueous chloride solutions. Dyes Pigments. 2017;139:218–32.

    Article  CAS  Google Scholar 

  42. Sun G-Y, Zhong D-D, Li X-J, Luo Y-Q, Ba H, Liu Z-S, et al. Effect of minimizing amount of template by addition of macromolecular crowding agent on preparation of molecularly imprinted monolith. Anal Bioanal Chem. 2015;407(24):7401–12.

    Article  CAS  Google Scholar 

  43. Zhang T, Liu F, Wang J, Li N, Li K. Molecular recognition properties of salicylic acid-imprinted polymers. Chromatographia. 2002;55(7):447–51.

    Article  CAS  Google Scholar 

  44. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (provisional). Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  45. Cech NB, Eleazer MS, Shoffner LT, Crosswhite MR, Davis AC, Mortenson AM. High performance liquid chromatography/electrospray ionization mass spectrometry for simultaneous analysis of alkamides and caffeic acid derivatives from Echinacea purpurea extracts. J Chromatogr A. 2006;1103(2):219–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Natural Science Foundation of China (grant no. U1303202), and the High Technology Research and Development Program of Xinjiang (no. 2016B03044-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Sheng Liu or Haji Akber Aisa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y.K., Jia, M., Yang, J. et al. A strategy of utilizing Zn(II) as metallic pivot in room temperature ionic liquid to prepare molecularly imprinted polymers for compound with intramolecular hydrogen bonds. Anal Bioanal Chem 410, 349–359 (2018). https://doi.org/10.1007/s00216-017-0765-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0765-0

Keywords

Navigation