Skip to main content

Advertisement

Log in

Analysis of procainamide-derivatised heparan sulphate disaccharides in biological samples using hydrophilic interaction liquid chromatography mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycosaminoglycans (GAGs) are a family of linear heteropolysaccharides made up of repeating disaccharide units that are found on the surface and extracellular matrix of animal cells. They are known to play a critical role in a wide range of cellular processes including proliferation, differentiation and invasion. To elucidate the mechanism of action of these molecules, it is essential to quantify their disaccharide composition. Analytical methods that have been reported involve either chemical or enzymatic depolymerisation of GAGs followed by separation of non-derivatised (native) or derivatised disaccharide subunits and detection by either UV/fluorescence or MS. However, the measurement of these disaccharides is challenging due to their hydrophilic and labile nature. Here we report a pre-column LC-MS method for the quantification of GAG disaccharide subunits. Heparan sulphate (HS) was extracted from cell lines using a combination of molecular weight cutoff and anion exchange spin filters and digested using a mixture of heparinases I, II and III. The resulting subunits were derivatised with procainamide, separated using hydrophilic interaction liquid chromatography and detected using electrospray ionisation operated in positive ion mode. Eight HS disaccharides were separated and detected together with an internal standard. The limit of detection was found to be in the range 0.6–4.9 ng/mL. Analysis of HS extracted from all cell lines tested in this study revealed a significant variation in their composition with the most abundant disaccharide being the non-sulphated ∆UA–GlcNAc. Some structural functional relationships are discussed demonstrating the viability of the pre-column method for studying GAG biology.

Extraction and HILIC UPLC-MS analysis of procainamide-labelled heparan sulphate disaccharides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Häcker U, Nybakken K. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6:530–41.

    Article  Google Scholar 

  2. García-Suárez O, Fernández-Vega I, Quirñs LM. Multiple alterations of heparan sulphate in cancer. OA Cancer. 2013;1:1–7.

    Google Scholar 

  3. Volpi N, Galeotti F, Yang B, Linhardt RJ. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc. 2014;9:541–58.

    Article  CAS  Google Scholar 

  4. Chang Y, Yang B, Zhao X, Linhardt RJ. Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal Biochem. 2012;427:91–8.

    Article  CAS  Google Scholar 

  5. Li L, Li Y, Ijaz M, Shahbaz M, Lian Q, Wang F. Review on complement analysis method and the roles of glycosaminoglycans in the complement system. Carbohydr Polym. 2015;134:590–7.

    Article  CAS  Google Scholar 

  6. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011; https://doi.org/10.1101/cshperspect.a004952.

  7. Yip GW, Smollich M, Götte M. Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther. 2006;5:2139–48.

    Article  CAS  Google Scholar 

  8. Hills FA, Abrahams VM, González-Timón B, Francis J, Cloke B, Hinkson L, et al. Heparin prevents programmed cell death in human trophoblast. Mol Hum Reprod. 2006;12:237–43.

    Article  CAS  Google Scholar 

  9. Stewart MD, Sanderson RD. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol. 2014;35:56–9.

    Article  CAS  Google Scholar 

  10. Beaudet JM, Mansur L, Joo EJ, Kamhi E, Yang B, Clausen TM, et al. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconj J. 2014;31:109–16.

    Article  CAS  Google Scholar 

  11. Heyer-Chauhan N, Ovbude IJ, Hills AA, Sullivan MH, Hills FA. Placental syndecan-1 and sulphated glycosaminoglycans are decreased in preeclampsia. J Perinat Med. 2014;42:329–38.

    Article  CAS  Google Scholar 

  12. Theocharis AD, Tsara ME, Papageorgacopoulou N, Karavias DD, Theocharis DA. Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition. Biochim Biophys Acta Mol basis Dis. 2000;1502:201–6.

    Article  CAS  Google Scholar 

  13. Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A, Höhne W, et al. Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc Natl Acad Sci U S A. 2004;101:10155–60.

    Article  CAS  Google Scholar 

  14. Sugahara KN, Hirata T, Tanaka T, Ogino S, Takeda M, Terasawa H, et al. Chondroitin sulfate E fragments enhance CD44 cleavage and CD44-dependent motility in tumor cells. Cancer Res. 2008;68:7191–9.

    Article  CAS  Google Scholar 

  15. Schowalter RM, Pastrana DV, Buck CB. Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog. 2011; https://doi.org/10.1371/journal.ppat.1002161.

  16. Gill VL, Aich U, Rao S, Pohl C, Zaia J. Disaccharide analysis of glycosaminoglycans using hydrophilic interaction chromatography and mass spectrometry. Anal Chem. 2013;85:1138–45.

    Article  CAS  Google Scholar 

  17. Ernst S, Langer R, Cooney CL, Sasisekharan R. Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol. 1995;30:387–444.

    Article  CAS  Google Scholar 

  18. Jandik KA, Kruep D, Cartier M, Linhardt RJ. Accelerated stability studies of heparin. J Pharm Sci. 1996;85:45–51.

    Article  CAS  Google Scholar 

  19. Yang B, Chang Y, Weyers AM, Sterner E, Linhardt RJ. Disaccharide analysis of glycosaminoglycan mixtures by ultra-performance liquid chromatography-mass spectrometry. J Chromatogr A. 2012;1225:91–8.

    Article  CAS  Google Scholar 

  20. Kleine TO, Merten B. A procedure for the simultaneous determination of small quantities of hyaluronate and isomeric chondroitin sulfates by chondroitinases. Anal Biochem. 1981;118:185–90.

    Article  CAS  Google Scholar 

  21. Säämänen A-M, Tammi M. Determination of unsaturated glycosaminoglycan disaccharides by spectrophotometry on thin-layer chromatographic plates. Anal Biochem. 1984;140:354–9.

    Article  Google Scholar 

  22. Sun X, Li L, Overdier KH, Ammons LA, Douglas IS, Burlew CC, et al. Analysis of total human urinary glycosaminoglycan disaccharides by liquid chromatography–tandem mass spectrometry. Anal Chem. 2015;87:6220–7.

    Article  CAS  Google Scholar 

  23. Antia IU, Yagnik DR, Pantoja LM, Shah AJ, Hills FA. Heparan sulfate disaccharide measurement from biological samples using pre-column derivatization, UPLC-MS and single ion monitoring. Anal Biochem. 2017;530:17–30.

  24. Deakin JA, Lyon M. Simplified and sensitive fluorescent method for disaccharide analysis of both heparan sulfate and chondroitin/dermatan sulfates from biological samples. Glycobiology. 2008;16:483–91.

    Article  Google Scholar 

  25. Kinoshita A, Sugahara K. Microanalysis of glycosaminoglycan-derived oligosaccharides labeled with a fluorophore 2-aminobenzamide by high-performance liquid chromatography: application to disaccharide composition analysis and exosequencing of oligosaccharides. Anal Biochem. 1999;269:367–78.

    Article  CAS  Google Scholar 

  26. Lawrence R, Olson SK, Steele RE, Wang L, Warrior R, Cummings RD, et al. Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J Biol Chem. 2008;283:33674–84.

    Article  CAS  Google Scholar 

  27. Kuberan B, Lech M, Zhang L, Wu ZL, Beeler DL, Rosenberg RD. Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. J Am Chem Soc. 2002;124:8707–18.

    Article  CAS  Google Scholar 

  28. Zaia J. On-line separations combined with ms for analysis of glycosaminoglycans. Mass Spectrom Rev. 2009;28:254–72.

    Article  CAS  Google Scholar 

  29. Solakyildirim K, Zhang Z, Linhardt RJ. Ultraperformance liquid chromatography with electrospray ion trap mass spectrometry for chondroitin disaccharide analysis. Anal Biochem. 2010;397:24–8.

    Article  CAS  Google Scholar 

  30. Gill VL, Wang Q, Shi X, Zaia J. Mass spectrometric method for determining the uronic acid epimerization in heparan sulfate disaccharides generated using nitrous acid. Anal Chem. 2012;84:7539–46.

    Article  CAS  Google Scholar 

  31. Shi X, Zaia J. Organ-specific heparan sulfate structural phenotypes. J Biol Chem. 2009;284:11806–14.

    Article  CAS  Google Scholar 

  32. Staples GO, Shi X, Zaia J. Glycomics analysis of mammalian heparan sulfates modified by the human extracellular sulfatase HSulf2. PLoS One. 2011; https://doi.org/10.1371/journal.pone.0016689.

  33. Kostiainen R, Kauppila TJ. Effect of eluent on the ionization process in liquid chromatography–mass spectrometry. J Chromatogr A. 2009;1216:685–99.

    Article  CAS  Google Scholar 

  34. Zaia J. Mass spectrometry and glycomics. OMICS: a Journal of Integrative Biology. 2010;14:401–18.

    Article  CAS  Google Scholar 

  35. Kozak RP, Tortosa CB, Fernandes DL, Spencer DI. Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization–mass spectrometry. Anal Biochem. 2015;486:38–40.

    Article  CAS  Google Scholar 

  36. Mo W, Takao T, Sakamoto H, Shimonish Y. Structural analysis of oligosaccharides derivatized with 4-aminobenzoic acid 2-(diethylamino)ethyl ester by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 1998;70:4520–6.

    Article  CAS  Google Scholar 

  37. Lavanant H, Loutelier-Bourhis C. Use of procaine and procainamide as derivatizing co-matrices for the analysis of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:1311–9.

    Article  CAS  Google Scholar 

  38. Harvey DJ. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom. 2000;11:900–15.

    Article  CAS  Google Scholar 

  39. Nordstrom A, Tarkowski P, Tarkowska D, Dolezal K, Astot C, Sandberg G, et al. Derivatization for LC-electrospray ionization-MS: a tool for improving reversed-phase separation and ESI responses of bases, ribosides, and intact nucleotides. Anal Chem. 2004;76:2869–77.

    Article  Google Scholar 

  40. Santa T, Al-Dirbashi OY, Fukushima T. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry for biomedical analysis. Drug Discov Ther. 2007;1:108–18.

    CAS  Google Scholar 

  41. Galeotti F, Volpi N. Oligosaccharide mapping of heparinase I-treated heparins by hydrophilic interaction liquid chromatography separation and online fluorescence detection and electrospray ionization-mass spectrometry characterization. J Chromatogr A. 2016;1445:68–79.

  42. Galeotti F, Volpi N. Online reverse phase-high-performance liquid chromatography-fluorescence detection-electrospray ionization-mass spectrometry separation and characterization of heparan sulfate, heparin, and low-molecular weight-heparin disaccharides derivatized with 2-aminoacridone. Anal Chem. 2011;83:6770–7.​

  43. Han J, Zhang F, Xie J, Linhardt RJ, Hiebert LM. Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin. Cardiovasc Diabetol. 2009;8:46.

    Article  Google Scholar 

  44. Klapoetke S, Zhang J, Becht S, Gu X, Ding X. The evaluation of a novel approach for the profiling and identification of N-linked glycan with a procainamide tag by HPLC with fluorescent and mass spectrometric detection. J Pharm Biomed Anal. 2010;53:315–24.

    Article  CAS  Google Scholar 

  45. Yoshino K-I, Takao T, Murata H, Shimonishi Y. Use of the derivatizing agent, 4-aminobenzoic acid 2-(diethylamino)ethyl ester, for high-sensitivity detection of oligosaccharides by electrospray ionization mass spectrometry. Anal Chem. 1995;67:4028–31.

    Article  CAS  Google Scholar 

  46. Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y, et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia. 1997;11:1469–77.

    Article  CAS  Google Scholar 

  47. Shao C, Shi X, White M, Huang Y, Hartshorn K, Zaia J. Comparative glycomics of leukocyte glycosaminoglycans. FEBS J. 2013;280:2447–61.

    Article  CAS  Google Scholar 

  48. Zhang L, Song K, Zhou L, Xie Z, Zhou P, Zhao Y, et al. Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1 (HS3ST3B1) promotes angiogenesis and proliferation by induction of VEGF in acute myeloid leukemia cells. J Cell Biochem. 2015;116:1101–12.

    Article  CAS  Google Scholar 

  49. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006;20:9–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit J. Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1.61 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antia, I.U., Mathew, K., Yagnik, D.R. et al. Analysis of procainamide-derivatised heparan sulphate disaccharides in biological samples using hydrophilic interaction liquid chromatography mass spectrometry. Anal Bioanal Chem 410, 131–143 (2018). https://doi.org/10.1007/s00216-017-0703-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0703-1

Keywords

Navigation